Skip navigation

NEED HELP?|

Sports Are 80 Percent Mental

9 Posts tagged with the baseball tag

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SkqEvfk0KYI/AAAAAAAAA0M/18lBPJOEQcE/s320/youth_baseball_pitcher.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SkqEvfk0KYI/AAAAAAAAA0M/18lBPJOEQcE/s320/youth_baseball_pitcher.jpg|border=0!</div>

At a recent baseball game, the 12-year-old second baseman on my son's team had a ground ball take a nasty hop, hitting him just next to his right eye. He was down on the field for several minutes and was later diagnosed at the hospital with a concussion.

 

Thankfully, acute baseball injuries like this are on the decline, according to a new report. However, several leading physicians say overuse injuries of young players caused by too much baseball show no signs of slowing down.

 

Our unlucky infielder's hospital injury report may become part of a national database called the National Electronic Injury Surveillance System (NEISS), part of the U.S. Consumer Product Safety Commission. It monitors 98 hospitals across the country for reports on all types of injuries.

 

Bradley Lawson, Dawn Comstock and Gary Smith of Ohio State University filtered this data to find just baseball-related injuries to kids under 18 from 1994-2006.

 

During that period, they found that more than 1.5 million young players were treated in hospital emergency rooms, with the most common injury being, you guessed it, being hit by the ball, and typically in the face.

 

The good news is that the annual number of baseball injuries has decreased by 24.9 percent over those 13 years. The researchers credit the decline to the increased use of protective equipment.

 

"Safety equipment such as age-appropriate breakaway bases, helmets with properly-fitted face shields, mouth guards and reduced-impact safety baseballs have all been shown to reduce injuries," Smith said. "As more youth leagues, coaches and parents ensure the use of these types of safety equipment in both practices and games, the number of baseball-related injuries should continue to decrease. Mouth guards, in particular, should be more widely used in youth baseball."

 

Their research is detailed in the latest edition of the journal Pediatrics.

 

The bad news is ...


 


!http://3.bp.blogspot.com/_3b3RMRFwqU0/SkqDClk4uAI/AAAAAAAAA0E/zHa7Uy4vcec/s320/51SsSOYomOL._SL160_.jpg|src=http://3.bp.blogspot.com/_3b3RMRFwqU0/SkqDClk4uAI/AAAAAAAAA0E/zHa7Uy4vcec/s320/51SsSOYomOL._SL160_.jpg|border=0!</div>

While accident-related injuries are down, preventable injuries from overuse still seem to be a problem, according to author Mark Hyman. In his recent book, "Until It Hurts," Hyman admits his own mistakes in pressuring his 14-year-old son to continue pitching with a sore arm, causing further injury.

 

Surprised by his own unwillingness to listen to reason, Hyman, a long-time journalist, researched the growing trend of high-pressure parents pushing their young athletes too far, too fast.

 

"Many of the physicians I spoke with told me of a spike in overuse injuries they had witnessed," Hyman told Livescience. "As youth sports become increasingly competitive — climbing a ladder to elite teams, college scholarships, parental prestige and so on — children are engaging in a range of risky behaviors."

 

One expert he consulted was Dr. Lyle Micheli, founder of one of the country's first pediatric sports medicine clinics at Children's Hospital in Boston. Micheli estimates that 75 percent of the young patients he sees are suffering from some sort of overuse injury, versus 20 percent back in the 1990s.

 

"As a medical society, we've been pretty ineffective dealing with this," Micheli said. "Nothing seems to be working."

 

Young surgeries

 

In severe overuse cases for baseball pitchers, the end result may be ulnar collateral ligament surgery, better known as "Tommy John" surgery. Dr. James Andrews, known for performing this surgery on many professional players, has noticed an alarming trend in his practice. Andrews told The Oregonian last month that more than one-quarter of his 853 patients in the past six years were at the high school level or younger, including one 7-year-old.

 

Last spring, Andrews and his colleagues conducted a study comparing 95 high-school pitchers who required surgical repair of either their elbow or shoulder with 45 pitchers that did not suffer injury.

 

They found that those who pitched for more than eight months per year were 500 percent more likely to be injured, while those who pitched more than 80 pitches per game increased their injury risk by 400 percent.  Pitchers who continued pitching despite having arm fatigue were an incredible 3,600 percent more likely to do serious damage to their arm.

 

Hyman encourages parents to keep youth sports in perspective. "I think that, generally, parents view sports as a healthy and wholesome activity. That's a positive. But, we live in hyper-competitive culture, and parents like to see their kids competing," he said. "It's not only sports. It's ballet and violin and SAT scores and a host of other things.  It's in our DNA."

 

 

Please visit my other sports science articles at Sports are 80 Percent Mental.</b>

523 Views 0 Comments Permalink Tags: coaching, baseball, evidence_based_coaching, sports_science, sport_skills, youth_sports

!http://drp2010.googlepages.com/TheCatch.jpg|src=http://drp2010.googlepages.com/TheCatch.jpg|border=0!From: Sports Are 80 Percent Mental

With the crack of the bat, the ball sails deep into the outfield. The center-fielder starts his run back and to the right, trying to keep his eyes on the ball through its flight path. His pace quickens initially, then slows down as the ball approaches. He arrives just in time to make the catch.  What just happened? How did he know where to run and at what speed so that he and the ball intersected at the same exact spot on the field. Why didn't he sprint to the landing spot and then wait for the ball to drop, instead of his controlled speed to arrive just when the ball did? What visual cues did he use to track the ball's flight?  Did Willie Mays make the most famous catch in baseball history because he is one of the greatest players of all-time with years of practice? Maybe, but now take a look at this "Web Gems" highlight video of 12 and 13 year-olds from last year's Little League World Series :

Just like we learned in pitching and hitting, fielding requires extensive mental abilities involving eyes, brain, and body movements to accomplish the task. Some physical skills, such as speed, do play a part in catching, but its the calculations and estimating that our brain has to compute that we often take for granted. The fact that fielders are not perfect in this skill, (there are dropped fly balls, or bad judgments of ball flight), begs the question of how to improve? As we saw with pitching and hitting (and most sports skills), practice does improve performance. But, if we understand what our brains are trying to accomplish, we can hopefully design more productive training routines to use in practice.

Once more, we turn to Mike Stadler , associate professor of psychology at University of Missouri, who provides a great overview of current fielding research in his book, "The Psychology of Baseball".

One organization that does not take this skill for granted is NASA. The interception of a ballistic object in mid-flight can describe a left fielder's job or an anti-missile defense system or how a pilot maneuvers a spacecraft through a three dimensional space. In fact, Michael McBeath , a former post doctoral fellow at the NASA Ames Research Center , (now an associate professor at Arizona State University), has been studying fly ball catching since 1995, beginning with his research study, "[How baseball outfielders determine where to run to catch fly ball | http://www.sciencemag.org/cgi/content/abstract/268/5210/569]". 

!http://drp2010.googlepages.com/McBeathLOT.jpg|height=200|width=147|src=http://drp2010.googlepages.com/McBeathLOT.jpg|border=0! His team developed a rocket-science like theory named Linear Optical Trajectory to describe the process that a fielder uses to follow the path of a batted ball. LOT says the fielder will adjust his movement towards the ball so that its trajectory follows a straight line through his field of vision. Rather than compute the landing point of the ball, racing to that spot and waiting, the fielder uses the information provided by the path of the ball to constantly adjust his path so that they intersect at the right time and place.

The LOT theory is an evolution from an earlier theory called Optical Acceleration Cancellation (OAC) that had the same idea but only explained the fielder's tracking behavior in the vertical dimension. In other words, as the ball leaves the bat the fielder watches the ball rise in his field of vision. If he were to stand still and the ball was hit hard enough to land behind him, his eyes would track the ball up and over his head, or at a 90 degree angle. If the ball landed in front of him, he would see the ball rise and fall but his viewing angle may not rise above 45 degrees. LOT and OAC argue that the fielder repositions himself throughout the flight of the ball to keep this viewing angle between 0 and 90 degrees. If its rising too fast, he needs to turn and run backwards. If the viewing angle is low, then the fielder needs to move forward so that the ball doesn't land in front of him. He can't always make to the landing spot in time, but keeping the ball at about a 45 degree angle by moving will help ensure that he gets there in time. While OAC explained balls hit directly at a fielder, LOT helps add the side-to-side dimension, as in our example of above of a ball hit to the right of the fielder.  More recently, McBeath has successfully defended his LOT theory here and here .

The OAC and LOT theories do agree on a fundamental cognitive science debate. There are two theories of how we perceive the world and then react to it. First, the Information Processing (IP) theory likens our brain to a computer in that we have inputs, our senses that gather information about the world, a memory system that stores all of our past experiences and lessons learned, and a "CPU" or main processor that combines our input with our memory and computes the best answer for the given problem. So, IP would say that the fielder sees the fly ball and offers it to the brain as input, the brain then pulls from memory all of the hundreds or thousands of fly ball flight paths that have been experienced, and then computes the best path to the ball's landing point based on what it has "learned" through practice. McBeath's research and observations of fielders has shown that the processing time to accomplish this task would be too great for the player to react.

OAC and LOT subscribe to the alternate theory of human perception, Ecological Psychology (EP) . EP eliminates the call to memory from the processing and argues that the fielder observes the flight path of the ball and can react using the angle monitoring system. This is still up for debate as the IPers would argue "learned facts" like what pitch was thrown, how a certain batter hits those pitches, how the prevailing wind will affect the ball, etc. And, with EP, how can the skill differences between a young ballplayer and an experienced major leaguer be accounted for? What is the point of practice, if the trials and errors are not stored/accessed in memory?

Of course, we haven't mentioned ground balls and their behavior, due to the lack of research out there. The reaction time for a third baseman to snare a hot one-hopper down the line is much shorter. This would also argue in favor of EP, but what other systems are involved?

Arguing about which theory explains a fielder's actions is only productive if we can apply the research to create better drills and practices for our players. The LOT theory seems to be  getting there as an explanation, but there is still debate over EP vs. IP . So many sport skills rely on some of these foundations, that this type of research will continue to be relevant.  As with pitching and hitting, fielding seems to improve with practice.

And then there's the ultimate catch of all-time, that baseball fans have long been buzzing about.  Your reward for getting to the end of this article is this little piece of history...








You were looking for Willie Mays and "The Catch", weren't you?  This ball girl would own the best all-time fielding achievement... if it were real .  But no, just another digital editing marvel.  This was going to be a commercial for Gatorade, then it was put on the shelf.  After it was leaked onto YouTube, the video hoax became a viral hit.  So much so, that Gatorade left it on YouTube and did make a commercial out of it for the 2008 All-Star game.  But, you don't need to tell your Little Leaguers.  Let them dream...</span>

666 Views 0 Comments Permalink Tags: coaching, baseball, sport_science, evidence_based_coaching, sports_cognition, sports_science, vision_and_perception, sport_skills, sport_psychology, youth_sports

!http://drp2010.googlepages.com/TedWilliams.jpg|src=http://drp2010.googlepages.com/TedWilliams.jpg|border=0![Ted Williams | http://en.wikipedia.org/wiki/Ted_Williams], arguably the greatest baseball hitter of all-time, once said, "I think without question the hardest single thing to do in sport is to hit a baseball". Williams was the last major league player to hit .400 for an entire season and that was back in 1941, 67 years ago!  In the 2008 Major League Baseball season that just ended, the league batting average for all players was .264, while the strikeout percentage was just under 20%. So, in ten average at-bats, a professional ballplayer, paid millions of dollars per year, gets a hit less than 3 times but fails to even put the ball in play 2 times. So, why is hitting a baseball so difficult? What visual, cognitive and motor skills do we need to make contact with an object moving at 70-100 mph?

In the second of three posts in the Baseball Brains series, we'll take a quick look at some of the theory behind this complicated skill. Once again, we turn to [Professor Mike Stadler | http://honors.missouri.edu/staff/#stadler] and his book "The Psychology of Baseball" for the answers.  First, here's the "Splendid Splinter" in action:







A key concept of pitching and hitting in baseball was summed up long ago by Hall of Fame pitcher Warren Spahn, when he said, “Hitting is timing. Pitching is upsetting timing.” To sync up the swing of the bat with the exact time and location of the ball's arrival is the challenge that each hitter faces.  If the intersection is off by even tenths of a second, the ball will be missed. Just as  pitchers need to manage their targeting, the hitter must master the same two dimensions, horizontal and vertical. The aim of the pitch will affect the horizontal dimension while the speed of the pitch will affect the vertical dimension. The hitter's job is to time the arrival of the pitch based on the estimated speed of the ball while determining where, horizontally, it will cross the plate. The shape of the bat helps the batter in the horizontal space as its length compensates for more error, right to left. However, the narrow 3-4" barrel does not cover alot of vertical ground, forcing the hitter to be more accurate judging the vertical height of a pitch than the horizontal location. So, if a pitcher can vary the speed of his pitches, the hitter will have a harder time judging the vertical distance that the ball will drop as it arrives, and swing either over the top or under the ball.A common coach's tip to hitters is to "keep your eye on the ball" or "watch the ball hit the bat". As Stadler points out, doing both of these things is nearly impossible due to the concept known as "[angular velocity | http://en.wikipedia.org/wiki/Angular_velocity]". Imagine you are standing on the side of freeway with cars coming towards you. Off in the distance, you are able to watch the cars approaching your position with relative ease, as they seem to be moving at a slower speed. As the cars come closer and pass about a 45 degree angle and then zoom past your position, they seem to "speed up" and you have to turn your eyes/head quickly to watch them. While the car is going at a constant speed, its angular velocity increases making it difficult to track.



!http://drp2010.googlepages.com/AdairSwing.jpg|height=232|width=420|src=http://drp2010.googlepages.com/AdairSwing.jpg|border=0!
This same concept applies to the hitter. As the graphic above shows (click to enlarge), the first few feet that a baseball travels when it leaves a pitcher's hand is the most important to the hitter, as the ball can be tracked by the hitter's eyes. As the ball approaches past a 45 degree angle, it is more difficult to "keep your eye on the ball" as your eyes need to shift through many more degrees of movement. Research reported by Stadler shows that hitters cannot watch the entire flight of the ball, so they employ two tactics.

First, they might follow the path of the ball for 70-80% of its flight, but then their eyes can't keep up and they estimate or extrapolate the remaining path and make a guess as to where they need to swing to have the bat meet the ball. In this case, they don't actually "see" the bat hit the ball. Second, they might follow the initial flight of the ball, estimate its path, then shift their eyes to the anticipated point where the ball crosses the plate to, hopefully, see their bat hit the ball. This inability to see the entire flight of the ball to contact point is what gives the pitcher the opportunity to fool the batter with the speed of the pitch. If a hitter is thinking "fast ball", their brain will be biased towards completing the estimated path across the plate at a higher elevation and they will aim their swing there. If the pitcher actually throws a curve or change-up, the speed will be slower and the path of the ball will result in a lower elevation when it crosses the plate, thus fooling the hitter.As in pitching, the eyes and brain determine much of the success for hitters. The same concepts apply to hitting any moving object in sports; tennis, hockey, soccer, etc.  Over time, repeated practice may be the only way to achieve the type of reaction speed that is necessary, but even for athletes who have spent their whole lives swinging a bat, there seems to be human limitation to success.  Tracking a moving object through space also applies to catching a ball, which we'll look at next time.</span>

637 Views 0 Comments Permalink Tags: coaching, baseball, sport_science, evidence_based_coaching, sports_science, vision_and_perception, sport_skills, sport_psychology, youth_sports

!http://drp2010.googlepages.com/RedSoxlogo.jpg|alt= |src=http://drp2010.googlepages.com/RedSoxlogo.jpg|mce_src=http://drp2010.googlepages.com/RedSoxlogo.jpg!!http://drp2010.googlepages.com/Rayslogo.jpg|alt= |src=http://drp2010.googlepages.com/Rayslogo.jpg|mce_src=http://drp2010.googlepages.com/Rayslogo.jpg!!http://drp2010.googlepages.com/Phillieslogo.jpg|alt= |src=http://drp2010.googlepages.com/Phillieslogo.jpg|mce_src=http://drp2010.googlepages.com/Phillieslogo.jpg!!http://drp2010.googlepages.com/Dodgerslogo.jpg|alt= |src=http://drp2010.googlepages.com/Dodgerslogo.jpg|mce_src=http://drp2010.googlepages.com/Dodgerslogo.jpg!


With the MLB League Championship Series' beginning this week,  Twenty-six teams are wondering what it takes to reach the "final four" of baseball which leads to the World Series.  The Red Sox, Rays, Phillies and Dodgers understand its not just money and luck.  Over 162 games, it usually comes down to the fundamentals of baseball: pitching, hitting and catching.  That sounds simple enough.  So, why can't everyone execute those skills consistently?  Why do pitchers struggle with their control?  Why do batters strike out?  Why do fielders commit errors?  It turns out Yogi Berra was right when he said, "Baseball is 90% mental, and the other half is physical."  In this three part series, each skill will be broken down into its cognitive sub-tasks and you may be surprised at the complexity that such a simple game requires of our brains.

First up, pitching or even throwing a baseball seems effortless until the pressure is on and the aim goes awry.  Pitching a 3" diameter baseball 60 feet, 6 inches over a target that is 8 inches wide requires an accuracy of 1/2 to 1 degree. Throwing it fast, with the pressure of a game situation makes this task one of the hardest in sports. In addition, a fielder throwing to another fielder from 40, 60 or 150 feet away, sometimes off balance or on the run, tests the brain-body connection for accuracy. So, how do we do it? And how can we learn to do it more consistently?  In his book, The Psychology of Baseball , Mike Stadler , professor of psychology at the University of Missouri,addresses each of these questions.

There are two dimensions to think about when throwing an object at a target: vertical and horizontal. The vertical dimension is a function of the distance of the throw and the effect of gravity on the object. So the thrower's estimate of distance between himself and the target will determine the accuracy of the throw vertically. Basically, if the distance is underestimated, the required strength of the throw will be underestimated and will lose the battle with gravity, resulting in a throw that will be either too low or will bounce before reaching the target. An example of this is a fast ball which is thrown with more velocity, so will reach its target before gravity has a path-changing effect on it. On the other hand, a curve ball or change-up may seem to curve downward, partly because of the spin put on the ball affecting its aerodynamics, but also because these pitches are thrown with less force, allowing gravity to pull the ball down. In the horizontal dimension, the "right-left" accuracy is related to more to the "aim" of the throw and the ability of the thrower to adjust hand-eye coordination along with finger, arm, shoulder angles and the release of the ball to send the ball in the intended direction.So, how do we improve accuracy in both dimensions? Prof. Stadler points out that research shows that skill in the vertical/distance estimating dimension is more genetically determined, while skill horizontally can be better improved with practice. Remember those spatial organization tests that we took that show a set of connected blocks in a certain shape and then show you four more sets of conected blocks? The question is which of the four sets could result from rotating the first set of blocks. Research has shown that athletes that are good at these spatial relations tests are also accurate throwers in the vertical dimension. Why? The thought is that those athletes are better able to judge the movement of objects through space and can better estimate distance in 3D space. Pitchers are able to improve this to an extent as the distance to the target is fixed. A fielder, however, starts his throw from many different positions on the field and has more targets (bases and cut-off men) to choose from, making his learning curve a bit longer.If a throw or pitch is off-target, then what went wrong?  Research has shown that despite all of the combinations of fingers, hand, arm, shoulder and body movements, it seems to all boil down to the timing of the finger release of the ball. In other words, when the pitcher's hand comes forward and the fingers start opening to allow the ball to leave. The timing of this release can vary by hundredths of a second but has significant impact on the accuracy of the throw. But, its also been shown that the throwing action happens so fast, that the brain could not consciously adjust or control that release in real-time. This points to the throwing action being controlled by what psychologists call an automated "motor program" that is created through many repeated practice throws. But, if a "release point" is incorrect, how does a pitcher correct that if they can't do so in real-time? It seems they need to change the embedded program by more practice.Another component of "off-target" pitching or throwing is the psychological side of a player's mental state/attitude. Stadler identifies research that these motor programs can be called up by the brain by current thoughts. There seems to be "good" programs and "bad" programs, meaning the brain has learned how to throw a strike and learned many programs that will not throw a strike. By "seeding" the recall with positive or negative thoughts, the "strike" program may be run, but so to can the "ball" program. So, if a pitcher thinks to himself, "don't walk this guy", he may be subconsciously calling up the "ball" program and it will result in a pitch called as a ball. So, this is why sports pscyhologists stress the need to "think positively", not just for warm and fuzzy feelings, but the brain may be listening and will instruct your body what to do.


So, assuming Josh Beckett of the Red Sox is getting the ball across the plate, will the Rays hit it? That is the topic for next time when we look at hitting an object that is moving at 97 MPH and reaches you in less than half a second.

625 Views 0 Comments Permalink Tags: coaching, baseball, pitching, sport_science, evidence_based_coaching, sports_cognition, vision_and_perception, sport_skills, sport_psychology, youth_sports, science_in_sports, pitching_tips




!http://drp2010.googlepages.com/ryanbraun.jpg|height=146|width=200|src=http://drp2010.googlepages.com/ryanbraun.jpg|border=0!
A player can feel it during a game when they hit a game-changing home run or when they go 0 for 4 at the plate.  A team can feel it when they come back from a deficit late in the game or when their lead in the division vanishes.  A fan can feel it as their team "catches fire" or goes "as cold as ice".  And, play-by-play announcers love to talk about it.  We know it as the "Big Mo", the "Hot Hand", and being "In The Zone" while the psychologists call it Psychological Momentum.  But, does it really exist?  Is it just a temporary shift in confidence and mood or does it actually change the outcome of a game or a season?  As expected, there are lots of opinions available.

 

The Oxford Dictionary of Sports Science defines psychological momentum as, "the positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition. Positive momentum is associated with periods of competition, such as a winning streak, in which everything seems to ‘go right’ for the competitors. In contrast, negative momentum is associated with periods, such as a losing streak, when everything seems to ‘go wrong’."  The interesting phrase in this definition is that Psychological Momentum (PM) "affects either the perceptions of the competitors or, perhaps</b>, the quality of performance and the outcome of the competition."  Most of the analyses on PM focus on the quantitative side to try to prove or disprove PM's affect on individual stats or team wins and losses.

 

Regarding PM in baseball, a Wall St. Journal article looked at last year's MLB playoffs, only to conclude there was no affect on postseason play coming from team momentum at the end of the regular season.  More recently, Another Cubs Blog also looked at momentum into this year's playoffs including opinion from baseball stats guru, Bill James, another PM buster.  For basketball, Thomas Gilovich's 1985 research into streaky, "hot hand" NBA shooting is the foundation for most of today's arguments against the existence of PM, or at least its affect on outcomes.

 

This view that if we can't see it in the numbers, more than would be expected, then PM does not exist may not capture the whole picture.  Lee Crust and Mark Nesti have recommended that researchers look at psychological momentum more from the qualitative side .  Maybe there are more subjective measures of athlete or team confidence that contribute to success that don't show up in individual stats or account for teams wins and losses.  As Jeff Greenwaldput it in his article, Riding the Wave of Momentum , "The reason momentum is so powerful is because of                the heightened sense of confidence it gives us -- the most important                aspect of peak performance. There is a term in sport psychology                known as self-efficacy, which is simply a player's belief in his/her                ability to perform a specific task or shot. Typically, a player’s                success depends on this efficacy. During a momentum shift, self-efficacy                is very high and players have immediate proof their ability matches                the challenge. As stated earlier, they then experience subsequent                increases in energy and motivation, and gain a feeling of control.                In addition, during a positive momentum shift, a player’s self-image                also changes. He/she feels invincible and this takes the "performer                self" to a higher level."

 

There would seem to be three distinct areas of focus for PM; an individual's performance within a game, a team's performance within a game and a team's performance across a series of games.  So, what are the relationships between these three scenarios?  Does one player's scoring streak or key play lift the team's PM, or does a close, hard-fought team win rally the players' morale and confidence for the next game?  Seeing the need for a conceptual framework to cover all of these bases, Jim Taylor and Andrew Demick created their Multidimensional Model of Momentum in Sports , which is still the most widely cited model for PM.  Their definition of PM, "a positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that will result in a commensurate shift in performance and competitive outcome", leads to the six key elements to what they call the "momentum chain".

 

First, momentum shifts begin with a "precipitating event", like an interception or fumble recovery in football or a dramatic 3-point shot in basketball.  The effect that this event has on each athlete varies depending on their own perception of the game situation, their self-confidence and level of self-efficacy to control the situation.

 

Second, this event leads to "changes in cognition, physiology, and affect."  Again, depending on the athlete, his or her base confidence will determine how strongly they react to the events, to the point of having physiological changes like tightness and panic in negative situations or a feeling of renewed energy after positive events.

 

Third, a "change in behavior" would come from all of these internal perceptions.  Coaches and fans would be able to see real changes in the style of play from the players as they react to the positive or negative momentum chain.

 

Fourth, the next logical step after behavior changes is to notice a "change in performance."  Taylor and Demick note that momentum is the exception not the norm during a game.  Without the precipitating event, there should not be noticeable momentum shifts.

 

Fifth, for sports with head to head competition, momentum is a two-way street and needs a "contiguous and opposing change for the opponent."  So, if after a goal, the attacking team celebrates some increased PM, but the defending team does not experience an equal negative PM, then the immediate flow of the game should remain the same.  Its only when the balance of momentum shifts from one team to the other.  Levels of experience in athletes has been shown to mitigate the effects of momentum, as veteran players can handle the ups and downs of a game better than novices.

 

Finally, at the end of the chain, if momentum makes it that far, there should be an immediate outcome change.  When the pressure of a precipitating event occurs against a team, the players may begin to get out of their normal, confident flow and start to overanalyze their own performance and skills.  We saw this in Dr. Sian Beilock's research in our article, Putt With Your Brain - Part 2.  As an athlete's skills improve they don't need to consciously focus on them during a game.  But pressure brought on by a negative event can take them out of this "automatic" mode as they start to focus on their mechanics to fix or reverse the problem.  As Patrick Cohn , a sport psychologist, pointed out in a recent USA Today article on momentum,  "You stop playing the game you played to be in that position. And the moment you switch to trying not to screw up, you go from a very offensive mind-set to a very defensive mind-set. If you're focusing too much on the outcome, it's difficult to play freely.  And now they're worried more about the consequences and what's going to happen than what they need to do right now."

 



There is no doubt that we will continue to hear references to momentum swings during games. When you do, you can conduct your own mini experiment and watch the reactions of the players and the teams over the next section of the game to see if that "precipitating event" actually leads to a game-changing moment.



!http://www.researchblogging.org/public/citation_icons/rb2_mid.png|style=border: 0pt none;|alt=ResearchBlogging.org|src=http://www.researchblogging.org/public/citation_icons/rb2_mid.png!



<span style="font-size: 130%;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofAppliedSportPsychology&amp;rft.id=info:DOI/10.1080%2F10413209408406465&amp;rft.atitle=Amultidimensionalmodelofmomentuminsports&amp;rft.date=1994&amp;rft.volume=6&amp;rft.issue=1&amp;rft.spage=51&amp;rft.epage=70&amp;rft.artnum=http%3A%2F%2Fwww.informaworld.com%2Fopenurl%3Fgenre%3Darticle%26doi%3D10.1080%2F10413209408406465%26magic%3Dcrossref%7C%7CD404A21C5BB053405B1A640AFFD44AE3&amp;rft.au=JimTaylor&amp;rft.au=AndrewDemick&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CCognitivePsychology%2CKinesiology">Jim Taylor, Andrew Demick (1994). A multidimensional model of momentum in sports Journal of Applied Sport Psychology, 6 (1), 51-70 DOI: 10.1080/10413209408406465 </span>

802 Views 0 Comments Permalink Tags: basketball, coaching, baseball, motivation, evidence_based_coaching, sports_cognition, sport_psychology, science_in_sports, momentum, in_the_zone, hot_hand

HGH - Human Growth Hoax?

Posted by Dan Peterson Jul 27, 2008

 

!http://bp1.blogger.com/_3b3RMRFwqU0/SIq6fhQ7cDI/AAAAAAAAAYk/BtwTSmcoiQo/s320-R/atlas2.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SIq6fhQ7cDI/AAAAAAAAAYk/BtwTSmcoiQo/s320-R/atlas2.jpg!

Athletes, both professional and amateur, as well as the general public are convinced that human growth hormone (HGH) , Erythropoietin (EPO) and anabolic-androgenic steroids (AAS) are all artificial and controversial paths to improved performance in sports.  The recent headlines that have included Barry Bonds, Marion Jones, Floyd Landis, Dwayne Chambers, Jose Canseco, Jason Giambi, Roger Clemens and many lesser known names (see the amazingly long list of doping cases in sport ) have referred to these three substances interchangeably leaving the public confused about who took what from whom.  With so many athletes willing to gamble with their futures, they must be confident that they will see significant short-term results.  So, is it worth the risk?  Two very interesting recent studies provide some answers on at least one of the substances, HGH. 




A team at the Stanford University School of Medicine, led by Hau Liu MD , recently reviewed 27 historical studies on the effects of HGH on athletic performance, dating back to 1966 (see reference below).  They wanted to see if there were any definitive links between HGH use and improved results.  In some of the studies, test volunteers who received HGH did develop more lean body mass, but also developed more lactate during aerobic testing which inhibited rather than helped performance.  While their muscle mass increased, other markers of athletic fitness, such as VO2max remained unchanged.  “The key takeaway is that we don’t have any good scientific evidence that growth hormone improves athletic performance,” said senior author Andrew Hoffman, MD , professor of endocrinology, gerontology and metabolism.




Both Liu and Hoffman cautioned that the amounts of HGH given to these test subjects may be much lower than the the purported levels claimed to be taken by professional athletes.  They also pointed out that at a professional level, a very slight improvement might be all that is necessary to get an edge of your opponent.  Hoffman also added an insightful comment, “So much of athletic performance at the professional level is psychological.”  If an athlete takes HGH, sees some muscle mass growth and isn't 100% sure of its performance capabilities, might he assume he now has other "Superman" powers?




That is exactly the premise that a research team from Garvan Institute of Medical Research in Sydney, Australia used to find out if HGH users simply relied on a placebo effect.  Sixty-four participants, young adult recreational athletes, were divided into two groups of 32 and tested for a baseline of athletic ability in endurance, strength, power and sprinting.  One group received growth hormone and the other group received a simple placebo.  It was a "double-blind" study in that neither the participants nor the researchers knew during the testing which substance each group received.




At the end of the 8 week treatment, the athletes were asked if they thought they were in the HGH group or the placebo group.  Half of the group that had received the placebo incorrectly guessed that they were on HGH.  Not too surprisingly, the majority of the "incorrect guessers" were men.  Here's where it gets interesting.  The incorrect guessers also thought that their athletic abilities had improved over the 8 week period.  The team retested all of the placebo group and actually did find improvement across all of the tests, but only significantly in the high-jump test.
Jennifer Hansen, a nurse researcher and Dr. Ken Ho, head of the pituitary research unit at Garvan have not released the data on the group that did receive the HGH, but they will in their final report coming soon.




So, let's recap.  On the one hand, we have a research review that claims there is not yet any scientific evidence that HGH actually improves sports performance.  Yet, we have hundreds, if not thousands, of athletes illegally using HGH for performance gain.  Showing the effect of the "if its good enough for them, its good enough for me" beliefs of the public regarding professional athlete use of HGH, we now have research that shows even those who received a placebo, but believed they were taking HGH not only thought they were improving but actually did improve a little.  Once again, we see the power of our own natural, non-supplemented brain to convince (or fool) ourselves to perform at higher levels than we thought possible.




<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!


<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Liu&amp;rft.aufirst=H&amp;rft.au=H+ Liu&amp;rft.au=DBravata&amp;rft.au=IOlkin&amp;rft.au=AFriedlander&amp;rft.au=VLiu&amp;rft.au=BRoberts&amp;rft.au=EBendavid&amp;rft.au=OSaynina&amp;rft.au=SSalpeter&amp;rft.au=AGarber&amp;rft.title=AnnalsofInternalMedicine&amp;rft.atitle=Systematicreview%3Atheeffectsofgrowthhormoneonathletic+performance.&amp;rft.date=2008&amp;rft.volume=148&amp;rft.issue=10&amp;rft.spage=747&amp;rft.epage=758&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fwww.annals.org%2Fcgi%2Fcontent%2Fshort%2F148%2F10%2F747&amp;rft.id=info:PMID/18347346">Liu, H., Bravata, D.M., Olkin, I., Friedlander, A., Liu, V., Roberts, B., Bendavid, E., Saynina, O., Salpeter, S.R., Garber, A.M. (2008). Systematic review: the effects of growth hormone on athletic performance.. Annals of Internal Medicine, 148(10), 747-758.

676 Views 0 Comments Permalink Tags: sport, sport, sport, sports, olympics, baseball, floyd, landis, in, skills, human, doping, psychology, growth, hormone, science, barry, bonds, marion, jones, jason, giambi

Visit any youth soccer field, baseball diamond, basketball court or football field and you will likely see them:  parents behaving badly.  Take a look at this Good Morning America report:

These are the extremes, but at most games, you can find at least one adult making comments at the referee, shouting at their child, or having a verbal exchange with another parent.  Thankfully, these parents represent only a small percentage of those attending the game.  Does that mean the others don't become upset at something during the game?  Usually not, as there are lots of opportunities to dispute a bad call or observe rough play or react to one of these loud parents.  The difference is in our basic personality psyche, according to Jay Goldstein, a kinesiology doctoral student at the University of Maryland School of Public Health .  His thesis, recently published in the Journal of Applied Social Psychology (see reference below), hypothesized that a parent with "control-oriented" personality would react to events at a game more than a parent with an "autonomy-oriented" personality.

 


According to Goldstein, defending our ego is what usually gets us in trouble when we feel insulted or take something personally.  At youth sports games, we transfer this pride to our kids, so if someone threatens their success on the field, we often take it personally.  The control-oriented parent is more likely to react with a verbal or sometimes physical response, while an autonomy-oriented parent is better able to internalize and maintain their emotions.  This "control" vs. "autonomy" comparison has also been seen in research on "road rage", when drivers react violently to another driver's actions.
Goldstein and his team focused their research on suburban Washington soccer parents back in 2004.  They designed a survey for parents to fill out prior to watching a youth soccer game that would help categorize them as control or autonomy-oriented.  Immediately after the game ended, another survey was given to the parents that asked about any incidents during the game that made them angry on a scale of 1, slightly angry, to 7, furious.  They were also asked what action they took when they were angry.  Choices included "did nothing" to more aggressive acts like walking towards the field and/or yelling or confronting either the referee, their own child, or another player/parent.  53% of the 340 parents surveyed reported getting angry at something during the game, while about 40% reported doing something about their anger.
There was a direct and significant correlation between control-oriented parents, as identified in the pre-game survey, and the level of angry actions they took during the game.  Autonomy-oriented parents still got mad, but reported less aggressive reactions.  As Goldstein notes, “Regardless of their personality type, all parents were susceptible to becoming more aggressive as a result of viewing actions on the field as affronts to them or their kids.  However, that being said, it took autonomy-oriented parents longer to get there as compared to the control-oriented parents.”
So, now that we know the rather obvious conclusion that parents who yell at other motorists are also likely to yell at referees, what can we do about it?  Goldstein sees this study as a first step.  He hopes to study a wider cross-section of sports and socio-economic populations.  Many youth sports organizations require parents to sign a pre-season "reminder" code of conduct, but those are often forgotten in the heat of the battle on the field.  Maybe by offering the same type of personality survey prior to the season, the "control-oriented" parents can be offered resources to help them manage their tempers and reactions during a game.  Since referees were the number one source of frustration reported by parents, two solutions are being explored by many organizations; more thorough referee training and quality control while also better training of parents on the rules of the game which often cause the confusion.
Sports contests will always be emotional, from kids' games all the way up to professionals.  Keeping the games in perspective and our reactions positive are tough things to do but when it comes to our kids, it is required.


!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!


Goldstein, J.D., Iso-Ahola, S.E. (2008). Determinants of Parents' Sideline-Rage Emotions and Behaviors at Youth Soccer Games. Journal of Applied Social Psychology, 38(6), 1442-1462. DOI: 10.1111/j.1559-1816.2008.00355.x</span>

756 Views 0 Comments Permalink Tags: basketball, coaching, soccer, baseball, relevant_research, sport_psychology, soccer_moms, sideline_rage

!http://bp1.blogger.com/_3b3RMRFwqU0/SHow_OmdEqI/AAAAAAAAAXU/0QZneKnbrAQ/s320-R/beane.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SHow_OmdEqI/AAAAAAAAAXU/0QZneKnbrAQ/s320-R/beane.jpg!Most baseball general managers live in obscurity most of their careers.  Its their first hire, the manager, that usually gets the red hot spotlight, after every win and loss, second-guessed by reporters with recorders and then later by fans.  The GM puts the players on the field and lets the manager and his coaches take it from there.  Billy Beane , Oakland A's general manager, could have also been an unknown, albeit interesting, name to the baseball audience if it were not for author Michael Lewis' 2003 book, Moneyball  .  Moneyball was a runaway hit (even today, 5 years later, it is #19 on Amazon's list of baseball books).  It has morphed into a full-fledged catchphrase philosophy used by everyone from Wall Street (where Beane borrowed the concept) to business consulting.  The general theme is to find undervalued assets (ballplayers) by focusing on statistics that your competition is ignoring.  Of course, you have to believe in your metrics and their predictive value for success (why has everyone else ignored these stats?)  The source of most of Beane's buried treasure of stats was Bill James and his Sabrmetrics.  Like picking undervalued stocks of soon to explode companies, Beane looked for the diamond in the dust (pun intended) and sign the player while no one was looking.  Constrained by his "small-market" team revenues, or maybe by his owners' crowbar-proof wallets, he needed to make the most from every dollar.

The combination of a GM's shrewd player selection and a manager who can develop that talent should reward the owner with the best of both worlds: an inexpensive team that wins.  This salary vs. performance metric is captured perfectly in this "real-time" graphic at BenFry.com .  It connects the updated win-loss record for each MLB team with its payroll to show the "bang for the buck" that the GMs/managers are getting from their players.  Compare the steep negative relationship for the Mets, Yankees, Tigers and Mariners with the amazing results of the Rays, Twins and Beane's own A's.  While the critics of Moneyball tactics would rightly point to the A's lack of a World Series win or even appearance, the "wins to wages" ratio has not only kept Beane in a job but given him part ownership in the A's and now the newly resurrected San Jose Earthquakes of soccer's MLS.  Beane believes the same search for meaningful and undiscovered metrics in soccer can give the Quakes the same arbitrage advantage.  In fact, there are rumours that he will focus full-time on conquering soccer as he knows there are much bigger opportunities worldwide if he can prove his methods within MLS.

In baseball, Beane relied on the uber-stat guru, Bill James, for creative and more relevant statistical slices of the game.  In soccer, he is working with some top clubs including his new favorite, Tottenham-Hotspur, of the English Premier League.  While he respects the history and tradition of the game, he is confident that his search for a competitive advantage will uncover hidden talents.  Analytical tools from companies such as Opta   in Europe and Match Analysis in the U.S. have combined video with detailed stat breakdowns of every touch of the ball for every player in each game.  Finding the right pattern and determinant of success has become the key, according to Match Analysis president Mark Brunkhart as quoted earlier this year ,
"You don't need statistics to spot the real great players or the really bad ones. The trick is to take the players between those two extremes and identify which are the best ones.  If all you do is buy the players that everyone else wants to buy then you will end up paying top dollar. But if you take Beane's approach - to use a disciplined statistical process to influence the selection of players who will bring the most value - then you are giving yourself the best chance of success. Who would not want to do that?"

Not to feel left out (or safe from scrutiny), the NBA now has its own sport-specific zealots.  The [Association for Professional Basketball Research (APBR) | http://apbr.org/] devotes its members time and research to finding the same type of meaningful stats that have been ignored by players, coaches and fans.  They, too, have their own Moneyball-bible, "The Wages of Wins " by David Berri, Martin Schmidt, and Stacey Brook.  David Berri's [WoW journal/blog | http://dberri.wordpress.com/] regularly posts updates and stories related to the current NBA season and some very intriguing analysis of its players and the value of their contributions.  None other than Malcolm Gladwell, of Tipping Point and Blink fame, provided the [review of Wages of Wins for the New Yorker | http://www.newyorker.com/archive/2006/05/29/060529crbo_books1].  One of the main stats used is something called a player's "Win Score" which attempts to measure the complete player, not just points, rebounds and assists.

 

Win Score (WS) = PTS + REB + STL + ½BLK + ½AST – FGA – ½FTA – TO – ½PF.   (Points, Rebounds, Steals, Blocked Shots, Assists, Field Goal Attempts, Free Throw Attempts, Turnovers, Personal Fouls)

 

WS is then adjusted for minutes played with the stat, WS48.  Of course, different player positions will have different responsibilities, so to compare players of different positions the Position Adjusted Win Score per 48 minutes or PAWS48 is calculated as: WS48 – Average WS48 at primary position played.  This allows an apples to apples comparison between players at a position, and a reasonable comparison of players' values across positions.  Berri's latest article looks at the fascination with Michael Beasley and some early comparisons in the Orlando Summer League. 

Will these statistics-based approaches to player evaluation be accepted by the "establishment"?  Judging by the growing number of young, MBA-educated GMs in sports, there is a movement towards more efficient and objective selection criteria.  Just as we saw in previous evidence-based coaching articles , the evidence-based general manager is here to stay.


 

600 Views 0 Comments Permalink Tags: nba, basketball, soccer, baseball, moneyball, sport_science, evidence_based_coaching, decision_theory_in_sports, billy_beane, bill_james, wages_of_wins

!http://bp1.blogger.com/_3b3RMRFwqU0/SHPW2TXf7bI/AAAAAAAAAXM/Ai7wkX-Ok1s/s320-R/golf.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SHPW2TXf7bI/AAAAAAAAAXM/Ai7wkX-Ok1s/s320-R/golf.jpg!Here are some quotes we have all heard (or said ourselves) on the golf course or at the ball diamond.

On a good day:

"It was like putting into the Grand Canyon"

"The baseball looked like a beach ball up there today"

On a bad day:

"The hole was as small as a thimble"

"I don't know, it looked like he was throwing marbles"

 

The baseball and the golf hole are the same size every day, so are these comments meaningless or do we really perceive these objects differently depending on the day's performance?  And, does our performance influence our perception or does our perception help our performance?

 

!http://bp3.blogger.com/_3b3RMRFwqU0/SHPWUztPsBI/AAAAAAAAAXE/RdKYh_ozFHQ/s200-R/witt-golfLO.jpg|style=border: 0pt none ;|src=http://bp3.blogger.com/_3b3RMRFwqU0/SHPWUztPsBI/AAAAAAAAAXE/RdKYh_ozFHQ/s200-R/witt-golfLO.jpg!Jessica Witt, an assistant professor of psychological science at the University of Virginia has made two attempts at the answer.  First, in a 2005 study, "See the Ball, Hit the Ball", her team studied softball players by designing an experiment that tried to correlate perceived softball size to performance.  She interviewed players immediately after a game and asked them to estimate the size of the softball by picking a circle off of a board that contained several different sizes.  She then found out how that player had done at the plate that day.  As expected, the players that were hitting well chose the larger sized circles to represent the ball size, while the underperforming hitters chose the smaller circles.  The team was not able to answer the question of causality, so they expanded the research to other sports.

 

Fast forward to July, 2008 and Witt and her team have just released a very similar study focused on golf, "[Putting to a bigger hole: Golf performance relates to perceived size | http://www.ingentaconnect.com/content/psocpubs/pbr/2008/00000015/00000003/art00013]".  Using the same experiment format, players who had just finished a round of golf were asked to pick out the perceived size of the hole from a collection of holes that varied in diameter by a few centimeters.  Once again, the players who had scored well that day picked the larger holes and vice versa for that day's hackers.  So, the team came to the same conclusion that there is some relationship between perception and performance, but could not figure out the direction of the effect.  Ideally, a player could "imagine" a larger hole and then play better because of that visual cue. 

 

Researchers at Vanderbilt University may have the answer.  In a study, "[The Functional Impact of Mental Imagery on Conscious Perception | http://dx.doi.org/10.1016/j.cub.2008.05.048]", the team led by Joel Pearson, wanted to see what influence our "Mind's Eye" has on our actual perception.  In their experiment, they asked volunteers to imagine simple patterns of vertical or horizontal stripes.  Then, they showed each person a pattern of green horizontal stripes in one eye and red vertical stripes in the other eye.  This would induce what is known as the "binocular rivalry" condition where each image would fight for control of perception and would appear to alternate from one to the other.  In this experiment, however, the subjects reported seeing the image they had first imagined more often.  So, if they had imagined vertical stripes originally, they would report seeing the red vertical stripes predominantly.

 

The team concluded that mental imagery does have an influence over what is later seen.  They also believe that the brain actually processes imagined mental images the same way it handles actual scenes.  "More recently, with advances in human brain imaging, we now know that when you imagine something parts of the visual brain do light up and you see activity there," Pearson says. "So there's more and more evidence suggesting that there is a huge overlap between mental imagery and seeing the same thing. Our work shows that not only are imagery and vision related, but imagery directly influences what we see."

 

So, back to our sports example, if we were able to imagine a large golf hole or a huge baseball, this might affect our actual perception of the real thing and increase our performance.  This link has not been tested, but its a step in the right direction.  Another open question is the effect that our emotions and confidence have on our perceived task.  That hole may look like the Grand Canyon, but the sand trap might look like the Sahara Desert!

 

<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!</span>

 

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Witt&amp;rft.aufirst=J&amp;rft.aumiddle=K&amp;rft.au=J+ Witt&amp;rft.title=PsychonomicBulletin%26Review&amp;rft.atitle=Puttingtoabiggerhole%3Agolfperformancerelatestoperceived+size&amp;rft.date=2008&amp;rft.volume=15&amp;rft.issue=3&amp;rft.spage=581&amp;rft.epage=585&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fwww.ingentaconnect.com%2Fcontent%2Fpsocpubs%2Fpbr%2F2008%2F00000015%2F00000003%2Fart00013&amp;rft.id=info:PMID/18567258">Witt, J.K. (2008). Putting to a bigger hole: golf performance relates to perceived size. Psychonomic Bulletin & Review, 15(3), 581-585.

494 Views 0 Comments Permalink Tags: coaching, golf, baseball, sport_science, evidence_based_coaching, vision_and_perception, sport_skills, sport_psychology


Dan Peterson

Dan Peterson

Member since: Oct 1, 2007

A Look Inside the Mind of the Athlete - You can find a mix of sport science, cognitive science, coaching and performance stories here as I focus on the "thinking" side of sports. My "home" is at http://blog.80percentmental.com. Thanks for stopping by!

View Dan Peterson's profile

Recent Comments

No recent comments.