Skip navigation

Sports Are 80 Percent Mental

13 Posts tagged with the sports_science tag

The Physiology Of Speed

Posted by Dan Peterson Aug 29, 2009

!http://4.bp.blogspot.com/_3b3RMRFwqU0/SnHCZzVlKJI/AAAAAAAAA5w/59rCxBaOnQE/s400/usain-bolt-olympics-200m.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SnHCZzVlKJI/AAAAAAAAA5w/59rCxBaOnQE/s400/usain-bolt-olympics-200m.jpg|border=0!</div>

Usain Bolt, the triple Olympic gold medal sprinter from Jamaica, predicted last week that he could break his own world record of 9.69 seconds in the 100 meter sprint with a time as low as 9.54 seconds.  (8/15 update: he came very close running a 9.58 at the World Championships in Berlin.)

 

He claimed his coach told him its possible, so he believes him. His coach, Glen Mills, may have just finished reading some new research coming out of Duke University that showed sprinters and swimmers who are taller, heavier but more slender are the ones breaking world records.

 

At first glance, it may not make sense that bigger athletes would be faster. However, Jordan Charles, a recent engineering grad at Duke, plotted all of the world record holders in the 100 meter sprint and the 100 meter swim since 1900 against their height, weight and a measurement he called "slenderness."

 

World record sprinters have gained an average of 6.4 inches in height since 1900, while champion swimmers have shot up 4.5 inches, compared to the mere mortal average height gain of 1.9 inches.

During the same time, about 7/10 of a second have been shaved off of the 100-meter sprint while over 14 seconds have come off the 100-meter swim record.

 

What's going on

Charles applied the "[constructal theory | http://www.constructal.org/]" he learned from his mentor Adrian Bejan, a mechanical engineering professor at Duke, that describes how objects move through their environment.

 

"Anything that moves, or anything that flows, must evolve so that it flows more and more easily," Bejan said. "Nature wants to find a smoother path, to flow more easily, to find a path with less resistance," he said. "The animal design never gets there, but it tries to be the least imperfect that it can be."

 

Their research is reported in the current online edition of the Journal of Experimental Biology.

 

For locomotion, a human needs to overcome two forces, gravity and friction. First, an athlete would need to lift his foot off the ground or keep his body at the water line without sinking. Second, air resistance for the sprinter and water resistance for the swimmer will limit speed.

 

So, the first step is actually weight lifting, which a bigger, stronger athlete will excel at. The second step is to move through the space with the least friction, which emphasizes the new slenderness factor.

 

By comparing height with a calculated "width" of the athlete, slenderness is a measurement of mass spread out over a long frame. The athlete that can build on more muscle mass over a aerodynamic frame will have the advantage.

 

!http://3.bp.blogspot.com/_3b3RMRFwqU0/SnHDFQlORaI/AAAAAAAAA54/r8PIzp7Vp7E/s320/Eamon_Sullivan.jpg|src=http://3.bp.blogspot.com/_3b3RMRFwqU0/SnHDFQlORaI/AAAAAAAAA54/r8PIzp7Vp7E/s320/Eamon_Sullivan.jpg|border=0!

The numbers

In swimming, legendary Hawaiian champion Duke Kahanamoku set the world record in 1912 with a time of 61.6 seconds with a calculated slenderness of 7.88. Some 96 years later, Eamon Sullivan lowered the world mark to 47.05 seconds at a slenderness factor of 8.29.

 

As the athletes’ slenderness factor has risen over the years, the winning times have dropped.  In 1929, Eddie Tolan's world-record 100 meter sprint of 10.4 seconds was achieved with a slenderness factor of 7.61. When Usain Bolt ran 9.69 seconds in the 2008 Olympics, his slenderness was also 8.29 while also being the tallest champion in history at 6-feet 5-inches.

 

“The trends revealed by our analysis suggest that speed records will continue to be dominated by heavier and taller athletes,” said Charles. “We believe that this is due to the constructal rules of animal locomotion and not the contemporary increase in the average size of humans.”

 

So, how fast did the original Olympians run? Charles used an anthropology finding for Greek and Roman body mass and plugged it into his formula.

 

“In antiquity, body weights were roughly 70 percent of what they are today,” Charles said. “Using our theory, a 100-meter dash that is won in 13 seconds would have taken about 14 seconds back then.”

Bolt puts his prediction to the test next month at the track and field world championships in Berlin. One of his main competitors is Asafa Powell, the previous world record holder, who is shorter and has a slenderness factor of 7.85. My money is on the Lightning Bolt.

 

Please read more sports science articles at Sports Are 80 Percent Mental.

450 Views 0 Comments Permalink Tags: olympics, sports_science, track_and_field, usain_bolt

!http://4.bp.blogspot.com/_3b3RMRFwqU0/SmevBjZ0NpI/AAAAAAAAA5Y/RG4IX0jTh6I/s320/Lance+Armstrong+TDF+09.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SmevBjZ0NpI/AAAAAAAAA5Y/RG4IX0jTh6I/s320/Lance+Armstrong+TDF+09.jpg|border=0!</div>

For any guy who has endured more than thirty minutes on a road bicycle seat, there is usually some concern over the strange numbness that occurs in places that should not go numb. Well, a new study has some good and bad news.

 

Spanish researchers have found that active male cyclists have lower quality sperm to the point of infertility risk. Among other things, they blame the painful "function over form" design of the wedge bicycle seat.

 

The good news is that unless you're training to be in the next Tour de France with Lance Armstrong, your time on the saddle shouldn't do any long-term damage.

 

A team led by professor Diana Vaamonde, from the University of Cordoba Medical School, tracked the workout regimen of 15 Spanish triathletes, with an average age of 33 who had been training for at least eight years, while also monitoring their sperm morphology.




http://2.bp.blogspot.com/_3b3RMRFwqU0/SmevKGDgunI/AAAAAAAAA5g/3sQfIBqw3_4/s1600-h/noseless-bicycle-seat.jpg

!http://4.bp.blogspot.com/_3b3RMRFwqU0/SmevoXAx8CI/AAAAAAAAA5o/974poKBnA2o/s200/BigBicycleSeat.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SmevoXAx8CI/AAAAAAAAA5o/974poKBnA2o/s200/BigBicycleSeat.jpg|border=0!</div>

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SmevKGDgunI/AAAAAAAAA5g/3sQfIBqw3_4/s200/noseless-bicycle-seat.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SmevKGDgunI/AAAAAAAAA5g/3sQfIBqw3_4/s200/noseless-bicycle-seat.jpg|border=0!

 

For those in the test group that covered more than 180 miles per week on their bikes, the percentage of normal looking sperm dropped from a group average of 10 percent to 4 percent, a rate where infertility problems begin. Increased swimming or running did not affect sperm quality.

 

"We found a statistically adverse correlation between sperm morphology and the volume of cycling training undertaken per week," Vaamonde said. "We believe that all the factors inherent in this sports activity, especially with regards to the cycling part, may affect sperm quality," she added. "Moreover, we think that normal physiological homeostasis – the body’s ability to regulate its own environment – may become irreversibly altered, therefore resulting in complex anomalies."

 

Vaamonde cited three possible reasons for the results: the increased heat during exercise, the friction and pressure against the seat causing microtrauma on the testes, and the overall rigor of intense exercise.

 

The study was released last week in Amsterdam at the annual conference of the European Society of Human Reproduction and Embryology (ESHRE).

 

The Spanish researchers were following up on research from 2002 that showed similar results for mountain bikers. In that study, Austrian researcher Ferdinand Frauscher tested 40 active (two hours per day) mountain bikers with 30 non-bikers. He found that the bikers had about half the sperm count of the non-bikers. Frauscher explained (as only a medical doctor can) the possible reasons: "The exact causes for the decreased sperm motility are unclear. We believe that repeated mechanical trauma to the testicles results in some degree of vascular damage, and may thereby cause a reduction in sperm motility." Ouch.

 

For casual bike riders, the risk is still quite low. Allan Pacey, senior lecturer in andrology at the University of Sheffield, told BBC News, "It is important to stress that even if the association between cycling and poor sperm morphology is correct, men training for triathlons are spending much more time in the saddle than the average social cycler or someone who might cycle to and from work."

 

For those that are still not okay with the "saddle sores," there are always the anatomically correct seats and the padded biker shorts, not to mention recumbent bikes. Beyond that, maybe a nice jog would be better.

 

Please read more sports science articles at Sports Are 80 Percent Mental!

599 Views 0 Comments Permalink Tags: cycling, triathlon, tour_de_france, lance_armstrong, sports_science

!http://4.bp.blogspot.com/_3b3RMRFwqU0/SlqgCQ-CyQI/AAAAAAAAA4A/h-NPbRqtWtQ/s400/exercise+workout.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SlqgCQ-CyQI/AAAAAAAAA4A/h-NPbRqtWtQ/s400/exercise+workout.jpg|border=0!</div>

After an hour of sweating on the treadmill or pumping iron, most of us look forward to the extra post-exercise "afterburn" of fat cells that has been promised to us by fitness pundits. This 24-hour period of altered metabolism is supposed to help with our overall weight loss. 

Unfortunately, a recent study found this to be a myth for moderate exercisers.

 

The new research clarifies a misunderstanding that exercisers can ignore their diet after a workout because their metabolism is in this super active state.

 

"It's not that exercise doesn't burn fat," said Edward Melanson, associate professor of medicine at the University of Colorado, "It's just that we replace the calories. People think they have a license to eat whatever they want, and our research shows that is definitely not the case. You can easily undo what you set out to do.”

 

The findings were detailed in the April edition of Exercise and Sport Sciences Review.

 

What does happen


Melanson and his team set out to measure whether people were able to burn more calories for the 24 hours after a workout compared to a day with no exercise. Their test groups, totaling 65 volunteers, included a mix of lean vs. obese and active vs. sedentary people.

On exercise days, they rode stationary bikes until they had burned 400 calories. Their pre and post exercise diet was controlled.

Throughout the groups, there was no difference in the amount of fat burned in the 24-hour period either with or without exercise.  Of course, during the exercise plenty of calories were being burned and that's the formula that Melanson would like us to remember.  "If you are using exercise to lose body weight or body fat, you have to consider how many calories you are expending and how many you are taking in," Melanson recently told WebMd. The daily energy balance or "calories in vs. calories out" is the most reliable equation for long-term weight loss.

While the current research focused on the moderate activity levels of most people, the researchers admitted they still need to examine the effect of higher intensity workouts and multiple consecutive days of exercise.

They are clear on their current message. "We suggest that it is time to put the myth that low intensity exercise promotes a greater fat burn to rest," Melanson writes. "Clearly, exercise intensity does not have an effect on daily fat balance, if intake is unchanged."

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SlqhrnZPX8I/AAAAAAAAA4I/CuA5gFU5SME/s200/weight-training.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SlqhrnZPX8I/AAAAAAAAA4I/CuA5gFU5SME/s200/weight-training.jpg|border=0!

Type of workout

So, how about a weight resistance training program mixed in with cardio work?  Another fitness industry claim is that more muscle mass on your frame will raise your metabolism rate, even while sitting on the couch.

 

The same study, using the same test groups, found the post-exercise rate of calorie burn did not change on days of lifting versus no lifting. It is true that a pound of muscle burns seven to ten calories per day versus only two calories per day for a pound of fat. However, the average adult just doesn't put on enough lean muscle mass to make this difference significant.

 

While this research dispels one myth about exercise, there is still overwhelming evidence of the benefits of movement when combined with your eating habits. So, before eating that double cheeseburger and fries, you might want to do some math to figure out how many stairs you'll have to climb to break even.

 

 

Please visit my other sports science articles at Sports Are 80 Percent Mental </b>

385 Views 0 Comments Permalink Tags: training, running, fitness, evidence_based_coaching, sports_science

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SkqEvfk0KYI/AAAAAAAAA0M/18lBPJOEQcE/s320/youth_baseball_pitcher.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SkqEvfk0KYI/AAAAAAAAA0M/18lBPJOEQcE/s320/youth_baseball_pitcher.jpg|border=0!</div>

At a recent baseball game, the 12-year-old second baseman on my son's team had a ground ball take a nasty hop, hitting him just next to his right eye. He was down on the field for several minutes and was later diagnosed at the hospital with a concussion.

 

Thankfully, acute baseball injuries like this are on the decline, according to a new report. However, several leading physicians say overuse injuries of young players caused by too much baseball show no signs of slowing down.

 

Our unlucky infielder's hospital injury report may become part of a national database called the National Electronic Injury Surveillance System (NEISS), part of the U.S. Consumer Product Safety Commission. It monitors 98 hospitals across the country for reports on all types of injuries.

 

Bradley Lawson, Dawn Comstock and Gary Smith of Ohio State University filtered this data to find just baseball-related injuries to kids under 18 from 1994-2006.

 

During that period, they found that more than 1.5 million young players were treated in hospital emergency rooms, with the most common injury being, you guessed it, being hit by the ball, and typically in the face.

 

The good news is that the annual number of baseball injuries has decreased by 24.9 percent over those 13 years. The researchers credit the decline to the increased use of protective equipment.

 

"Safety equipment such as age-appropriate breakaway bases, helmets with properly-fitted face shields, mouth guards and reduced-impact safety baseballs have all been shown to reduce injuries," Smith said. "As more youth leagues, coaches and parents ensure the use of these types of safety equipment in both practices and games, the number of baseball-related injuries should continue to decrease. Mouth guards, in particular, should be more widely used in youth baseball."

 

Their research is detailed in the latest edition of the journal Pediatrics.

 

The bad news is ...


 


!http://3.bp.blogspot.com/_3b3RMRFwqU0/SkqDClk4uAI/AAAAAAAAA0E/zHa7Uy4vcec/s320/51SsSOYomOL._SL160_.jpg|src=http://3.bp.blogspot.com/_3b3RMRFwqU0/SkqDClk4uAI/AAAAAAAAA0E/zHa7Uy4vcec/s320/51SsSOYomOL._SL160_.jpg|border=0!</div>

While accident-related injuries are down, preventable injuries from overuse still seem to be a problem, according to author Mark Hyman. In his recent book, "Until It Hurts," Hyman admits his own mistakes in pressuring his 14-year-old son to continue pitching with a sore arm, causing further injury.

 

Surprised by his own unwillingness to listen to reason, Hyman, a long-time journalist, researched the growing trend of high-pressure parents pushing their young athletes too far, too fast.

 

"Many of the physicians I spoke with told me of a spike in overuse injuries they had witnessed," Hyman told Livescience. "As youth sports become increasingly competitive — climbing a ladder to elite teams, college scholarships, parental prestige and so on — children are engaging in a range of risky behaviors."

 

One expert he consulted was Dr. Lyle Micheli, founder of one of the country's first pediatric sports medicine clinics at Children's Hospital in Boston. Micheli estimates that 75 percent of the young patients he sees are suffering from some sort of overuse injury, versus 20 percent back in the 1990s.

 

"As a medical society, we've been pretty ineffective dealing with this," Micheli said. "Nothing seems to be working."

 

Young surgeries

 

In severe overuse cases for baseball pitchers, the end result may be ulnar collateral ligament surgery, better known as "Tommy John" surgery. Dr. James Andrews, known for performing this surgery on many professional players, has noticed an alarming trend in his practice. Andrews told The Oregonian last month that more than one-quarter of his 853 patients in the past six years were at the high school level or younger, including one 7-year-old.

 

Last spring, Andrews and his colleagues conducted a study comparing 95 high-school pitchers who required surgical repair of either their elbow or shoulder with 45 pitchers that did not suffer injury.

 

They found that those who pitched for more than eight months per year were 500 percent more likely to be injured, while those who pitched more than 80 pitches per game increased their injury risk by 400 percent.  Pitchers who continued pitching despite having arm fatigue were an incredible 3,600 percent more likely to do serious damage to their arm.

 

Hyman encourages parents to keep youth sports in perspective. "I think that, generally, parents view sports as a healthy and wholesome activity. That's a positive. But, we live in hyper-competitive culture, and parents like to see their kids competing," he said. "It's not only sports. It's ballet and violin and SAT scores and a host of other things.  It's in our DNA."

 

 

Please visit my other sports science articles at Sports are 80 Percent Mental.</b>

514 Views 0 Comments Permalink Tags: coaching, baseball, evidence_based_coaching, sports_science, sport_skills, youth_sports

!http://1.bp.blogspot.com/_3b3RMRFwqU0/SjbZstqaPwI/AAAAAAAAArs/0sO5iNgvIEc/s400/kidsplaying.jpg|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SjbZstqaPwI/AAAAAAAAArs/0sO5iNgvIEc/s400/kidsplaying.jpg|border=0!</div>

As usual, your Mom was right. When she told you to get outside and play, she instinctively knew that would be good for you.

 

Researchers at the University of Exeter have found that kids' natural short bursts of play energy contribute just as much to a healthy lifestyle as longer bouts of organized exercise, such as gym class.

As of 2008, 32 percent of U.S. children were overweight or obese, as measured by their body mass index. While many organized programs have studied this epidemic, the prescription remains the same: less food, more exercise.

 

In fact, a previous study of 133 children found that the physical activity of the obese children over a three-week period was 35 prcent less during school days and 65 percent less on weekends compared to the children who were within accepted healthy weight norms.

 

In the new study, Michelle Stone and Roger Eston of Exeter's School of Sport and Health Sciences measured the activity level of 47 boys aged between 8 and 10 over seven days using an accelerometer strapped to each boy's hip (similar to the one inside your iPhone or Wii controller that senses motion).

The key was to find a model that would record the shortest bursts of energy, sometimes less than 2 seconds. As any boy's parents know, those spurts can happen all afternoon, whether it be chasing the dog, throwing rocks in the lake or climbing a tree.

 

The researchers also measured waist circumference, aerobic fitness and blood pressure of each boy. They found that even though their activity levels came in many short chunks, their health indicators were all in the normal range.

 

Stone explains their conclusion, "Our study suggests that physical activity is associated with health, irrespective of whether it is accumulated in short bursts or long bouts. Previous research has shown that children are more naturally inclined to engage in short bursts of running, jumping and playing with a ball, and do not tend to sustain bouts of exercise lasting five or more minutes. This is especially true for activities that are more vigorous in nature.

 

Their findings are in the April edition of the International Journal of Pediatric Obesity.

 

The researchers admit that more research is needed to measure long-term effects on health.  Establishing activity guidelines for parents and schools will help the kids plan time to move each day.

 

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SjbZ8_Lq2NI/AAAAAAAAAr0/lB7ZNUeWdCE/s200/Play60.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SjbZ8_Lq2NI/AAAAAAAAAr0/lB7ZNUeWdCE/s200/Play60.jpg|border=0!</div>

The National Football League has even started a program called NFL Play 60 that encourages kids to move for at least 60 minutes each day.  "Our players know the importance of staying healthy and it’s important that young fans also understand the value of exercise," said NFL Commissioner Roger Goodell. "Play 60 is an important tool in ensuring children get their necessary daily physical activity as recommended by health and fitness experts."

 

So, more recess and less physical education in our schools? Maybe, according to Stone, "If future research backs up our findings, we would do better to encourage young children to do what they do naturally, rather than trying to enforce long exercise sessions on them. This could be a useful way of improving enjoyment and sustainability of healthy physical activity levels in childhood."

 

Please visit my other sports science articles at Sports Are 80 Percent Mental

414 Views 0 Comments Permalink Tags: fitness, sport_science, evidence_based_coaching, sports_science, youth_sports

!http://2.bp.blogspot.com/_3b3RMRFwqU0/SixzEns9r0I/AAAAAAAAArc/5r2boO1wF8k/s320/running-man-heart.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SixzEns9r0I/AAAAAAAAArc/5r2boO1wF8k/s320/running-man-heart.jpg|border=0!
Many people exercise to improve the health of their hearts. Now, researchers have found a link between your heart rate just before and during exercise and your chances of a future heart attack.
Just the thought of exercise raises your heart rate. The new study shows that how much it goes up is related to the odds of you eventually dying of a heart attack.

More than 300,000 people die each year from sudden cardiac arrest in the U.S., often with no known risk factors. Being able to find early warning signs has been the goal of researchers like Professor Xavier Jouven, of the Hopital Européen Georges Pompidou in Paris.

Jouven's team has been examining data from a study of 7,746 French men employed by the Paris Civil Service and given health examinations between 1967-1972, including exercise tests, electrocardiograms and heart rate measurements. Over an average 23-year follow-up, 83 eventually died of heart attacks, also known as sudden cardiac death (SCD).

In 2005, Jouven's team first showed that how a heart behaves before, during and after exercise could predict future problems. The risk of a future heart attack was about four times higher than normal in men whose resting hearts beat faster than 75 beats per minute (bpm) or did not speed up by more than 89 beats during exercise. Likewise, heart attacks were twice as likely in men whose heart rates didn't slow down more than 25 beats in the first minute after exercise stopped.

Just a thought

In the latest study, published last week in the European Heart Journal, the French researchers found another interesting clue in the same data set. Not only was the resting heart rate of each person taken, but also another reading right before they were to start a strenuous exercise bike test. This rate is affected by what they called "mild mental stress." It measures the body's physiological anticipation of exercise .

 

Think of this type of stress as the brain's warning to the body that some difficult, sweaty work is about to begin. It is normal for this rate to be slightly higher than the resting rate, but for some it is significantly higher.

 

The men who had the highest increase in heart rate during this period (increasing by more than 12 beats a minute) had twice the risk of eventual future sudden cardiac death compared to men who had the lowest increase in heart rate (an increase of less than four beats a minute).

 

So, the high-risk heart overreacts to the anticipation of exercise, and then does not respond to the full extent needed during exercise. Afterwards, it does not regulate itself down fast enough.

 

What's going on

Jouven hypothesized that the autonomic nervous system (ANS), the body's internal control governor, must be out of whack.

 

!http://3.bp.blogspot.com/_3b3RMRFwqU0/Six0njRi5kI/AAAAAAAAArk/ETSL44_ynGQ/s400/autonomic_nervous_system.jpg|src=http://3.bp.blogspot.com/_3b3RMRFwqU0/Six0njRi5kI/AAAAAAAAArk/ETSL44_ynGQ/s400/autonomic_nervous_system.jpg|border=0! The ANS has two parts, the sympathetic and the parasympathetic. Joeven suggests we think of the sympathetic system as the accelerator that turns up our response to exercise by increasing our heart rate. Putting the brakes on this acceleration are the vagus nerves, part of the parasympathetic system, preventing our heart from running out of control.

 

"There is a balance between the accelerator (sympathetic activation) and the brake (vagus nerve activation)," Jouven explains. "During an ischemic episode, when blood flow to the heart is reduced, sympathetic activation occurs to counteract it. However, if there is no protection by the vagal tone (the brake), the activation can become uncontrolled and then it becomes dangerous."

 

Finding this connection between heart rate and future heart problems is encouraging for future research, according to Jouven.

 

"These findings may carry significant clinical implications," he said. "Few measurements in medicine are as inexpensive and as easy to obtain in large general populations as to measure the heart rate difference between resting and being ready to perform an exercise test. The results will contribute towards a better understanding of the mechanisms of cardiac death."

 

Please visit my other sports science articles at Sports Are 80 Percent Mental .</b>

344 Views 0 Comments Permalink Tags: running, fitness, sport_science, sports_science, sports_medicine



!http://4.bp.blogspot.com/_3b3RMRFwqU0/SV1bdmTOovI/AAAAAAAAAgQ/cPNSNk-wD4s/s320/genetic_swab_test_athlete.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SV1bdmTOovI/AAAAAAAAAgQ/cPNSNk-wD4s/s320/genetic_swab_test_athlete.jpg|border=0!




As first seen on Livescience.com.</b>

 

Of all of the decisions parents face regarding their children's future, choosing between shoulder pads or running shoes for their Christmas present seems trivial. Well, according to Kevin Reilly, president of Atlas Sports Genetics , this is a decision you should not take lightly. 

"If you wait until high school or college to find out if you have a good athlete on your hands, by then it will be too late," he said in a recent New York Times interview . "We need to identify these kids from 1 and up, so we can give the parents some guidelines on where to go from there."

 

Earlier this month, Reilly's company began marketing a $149 saliva swab test for kids, aged 1 to 8, to determine which variant of the gene ACTN3 is in their DNA. According to a 2003 Australian study , ACTN3 was shown to be a marker for two different types of athletic prowess, explosive power or long endurance. While everyone carries the gene, the combination of variants inherited, one from each parent, differs.

 

Science of success

The R variant of ACTN3 signals the body to produce a protein, alpha-actinin-3, which is found exclusively in fast-twitch muscles. The X variant prohibits this production. So, athletes inheriting two R variants may have a genetic advantage in sports requiring quick, powerful muscle contractions from their fast-twitch muscle fibers.

 

In the ACTN3 study, Dr. Kathryn North and her lab at the Institute for Neuromuscular Research of the University of Sydney looked at 429 internationally ranked Australian athletes and found significant correlation between power sport athletes and the presence of the R variant. All of the female sprint athletes had at least one R variant, as did the male power-sport athletes. In fact, 50 percent of the 107 sprinters had two copies of the R variant.

 

!http://1.bp.blogspot.com/_3b3RMRFwqU0/SV1byaOov2I/AAAAAAAAAgY/-H4pw7JYiGQ/s320/baby_athlete|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SV1byaOov2I/AAAAAAAAAgY/-H4pw7JYiGQ/s320/baby_athlete|border=0! What about those aspiring athletes that were not fortunate enough to inherit the R variant and its protein producing qualities?

 

North's team also noted that the elite endurance athletes seemed to be linked to the XX variation, although only significantly in the female sample. In 2007, her team pursued this link by developing a strain of mice that was completely deficient in the alpha-actinin-3 protein similar to an athlete with an XX allele. They found the muscle metabolism of the mice without the protein was more efficient. Amazingly, the mice were able to run 33 percent farther than mice with the normal ACTN3 gene.

 

 

Cloudy future

Additional research is showing mixed results, however. 

 

In 2007, South African researchers found no significant correlation between 457 Ironman triathletes, known for their endurance, and the XX combination. This year, Russian researchers at the St. Petersburg Research Institute of Physical Culture also failed to establish the XX-endurance performance link among 456 elite rowers but did find the RR connection among a sample of Russian power sports athletes.

 

So, can we at least find the next Usain Bolt among our kids?

 

"Everybody wants to predict future athletic success based on present achievement or physical makeup. But predicting success is much more difficult than most people think," Robert Singer, professor and chair of the department of exercise and sport sciences at the University of Florida warns in the book "Sports Talent" (Human Kinetics Publishers, 2001) by Jim Brown.

 

"There are too many variables, even if certain athletes have a combination of genes that favors long-range talent," Singer said. "A person's genetic makeup can be expressed in many different ways, depending on environmental and situational opportunities. Variables such as motivation, coachability, and opportunity can't be predicted."

 

Destiny?

Just as we assume that kids that are at the 99 percent percentile in height are destiny-bound for basketball or volleyball, having this peek into their genome may tempt parents to limit the sports choices for their son or daughter.

 

Even Mr. Reilly expressed his concern in the Times article: "I'm nervous about people who get back results that don't match their expectations," he said. "What will they do if their son would not be good at football? How will they mentally and emotionally deal with that?"

 

!http://drp2010.googlepages.com/Finger_Length.jpg|height=200|width=80|src=http://drp2010.googlepages.com/Finger_Length.jpg|border=0! For those parents that are just not ready to discover the sports destiny of their child, or just want to save the $150, there is a much simpler alternative. Hold your son or daughter's hand, palm up. Measure the lengths of their index finger and their ring finger. Divide the former by the latter. According to John Manning, professor of psychology at the University of Central Lancashire, if the ratio is closer to .90 than 1.0, you may have a budding superstar.

 

Manning explains in his aptly named new book, "The Finger Book" (Faber and Faber, 2008),that the amount of a fetus' exposure to testosterone in the womb determines the length of the ring finger, while estrogen levels are expressed in the length of the index finger. According to Manning's theory, more testosterone means more physical and motor skill ability.

 

The digit ratio theory, as it is known, has been the subject of more than 120 studies to find its effect on athletic, musical and even lovemaking aptitude.

 

Don't worry if the ratio is closer to 1.0, which is by far the norm. Plus, you will be able to relax, enjoy your kids' sports events and only worry about their genetic disposition to being happy.

677 Views 0 Comments Permalink Tags: sports_science, sport_skills, youth_sports, sports_parents, actn3, athletic_gene, digit_ratio_theory


!http://drp2010.googlepages.com/PlaxicoBurress.jpg|height=285|width=420|src=http://drp2010.googlepages.com/PlaxicoBurress.jpg|border=0!


As first seen on LiveScience.com
and Sports Are 80 Percent Mental



From the "athletes behaving badly" department (in the past month, anyway):
•    NHL bad boy (Sean Avery) was suspended for six games for a crude remark.
•    Six NFL players were suspended for allegedly violating the league's drug policy.
•    Another NFL player (Adam "Pacman" Jones) returned to his team's roster after being suspended, again, for an off-field altercation.
•    Oh, and NFL receiver (Plaxico Burress) accidentally shot himself in a nightclub with a gun he was not licensed to carry. 

Despite the 24/7 media coverage of each of these incidents, sports fans have become accustomed to and somewhat complacent with hearing about athletes and their deviant acts.
In fact, new statistics reveal that bad behavior is clearly evident among high school athletes, particularly in high-contact sports.

It starts young
Besides the highly publicized stories, there are thousands more across the nation involving amateur athletes taking risks both on and off the field. From performance-enhancing supplements to referee/official abuse to fights, guns and recorded crimes, the image of sports as a positive influence on athletes may need a second look.

Granted, in a population of any size there will be a few bad apples. However, these actions have become so prevalent that academic researchers have created a branch of study called "deviance in sports" attached to the sports sociology tree. 

They are asking questions and challenging some assumptions about cause and effect. Is there a connection between sports participation and deviance? Does the intense competition and battle on the field shape a player's off-the-field lifestyle? Since success in sports brings attention and prestige to athletes, does the risk of losing that status cause a need to take risks to maintain their "top dog" positions?

In their new book, "Deviance and Social Control in Sport," researchers Michael Atkinson and Kevin Young emphasize the confusing environment surrounding athletes. They describe two types of deviance: wanted and unwanted.

Owners, players and fans may know that certain behaviors are literally against the rules but are at the same time appreciated as a sign of doing whatever it takes to win.  Performance-enhancing drugs are not allowed in most sports, but athletes assume they will improve their performance, which helps their team win and keeps fans happy. Fights in hockey will be, according to the rule book, penalized, but this deviance is assumed to be wanted by fans and teammates as a sign of loyalty.

However, related bad behavior can quickly turn on a player to being socially unwanted. 

 

!http://drp2010.googlepages.com/seanavery.jpg|height=156|width=200|src=http://drp2010.googlepages.com/seanavery.jpg|border=0!Abuse of drugs that don't contribute to a win, (marijuana, cocaine, alcohol), will transform that same player into a villain with shock and outrage being reported in the media. In the Sean Avery example, a hockey player fighting to defend his teammates on the ice can then be suspended from the team and criticized by those same teammates for an off-color remark.

Real statistics
Most athletes who make it to the professional level have been involved in sports since youth. Sports sociologists and psychologists often look at the early development years of athletes to get a glimpse of patterns, social norms and influences that contribute to later behaviors.

In a recent American Sociological Review article, Derek Kreager, assistant professor of sociology at Penn State University, challenged the long-held belief that youth sports participation is exclusively beneficial to their moral character development. 

With the focus on teaching teamwork, fair play, and self esteem, sports are often cited as the antidote to delinquency. But Kreager notes that other studies have looked at the culture that surrounds high school and college athletes and identified patterns of clichés, privileges and attitudes of superiority. For some athletes, these patterns are used to justify deviant behavior.

In fact, his most recent research attempted to find a cause-and-effect link between deviant behavior and specific sports. Specifically, he asked if high-contact, physical sports like football and wrestling created athletes who were more prone to violent behavior off the field.

Using data from the National Longitudinal Study of Adolescent Health, more than 6,000 male students from across 120 schools were included. The data set included a wide collection of socioeconomic information, including school activities, risk behaviors and at-home influences. Kreager's study analyzed the effects of three team sports (football, basketball, and baseball) and two individual sports (wrestling and tennis) on the likelihood of violent off-field behavior, specifically, fighting.

To isolate the effect of each sport, the study included control groups of non-athletes and those that had a history of physical violence prior to playing sports. 

For team sports, football players were 40 percent more likely to be in a confrontation than non-athletes. In individual sports, wrestlers were in fights 45 percent more often, while tennis players were 35 percent less likely to be in an altercation. Basketball and baseball players showed no significant bias either way.

"Sports such as football, basketball, and baseball provide players with a certain status in society," Kreager said. "But football and wrestling are associated with violent behavior because both sports involve some physical domination of the opponent, which is rewarded by the fans, coaches and other players. Players are encouraged to be violent outside the sport because they are rewarded for being violent inside it."

851 Views 0 Comments Permalink Tags: football, sports_science, sport_psychology, youth_sports, pacman_jones, physics_of_hockey, plaxico_burress, sean_avery, sports_parents, sports_violence


!http://drp2010.googlepages.com/BrandonSutterhit|height=256|width=420|src=http://drp2010.googlepages.com/BrandonSutterhit|border=0!


http://draft.blogger.com/post-create.g?blogID=5873119327808729601http://draft.blogger.com/post-create.g?blogID=5873119327808729601As first seen on LiveScience.com and Sports Are 80 Percent Mental 

One painful lesson every National Hockey League rookie learns is to keep your head up when skating through the neutral zone. If you don't, you will not see the 4700 joules of kinetic energy skating at you with bad intentions.


During an October 25th game, Brandon Sutter, rookie center for the Carolina Hurricanes, never saw Doug Weight, veteran center of the New York Islanders, sizing him up for a hit that resulted in a concussion and an overnight stay in the hospital.  Hockey purists will say that it was a "clean hit" and Weight was not penalized.










Six days before that incident, the Phoenix Coyotes' Kurt Sauer smashed Andrei Kostitsyn of the Montreal Canadiens into the sideboards. Kostitsyn had to be stretchered off of the ice and missed two weeks of games with his concussion. Sauer skated away unhurt and unpenalized. [See video here | http://www.youtube.com/watch?v=gc_Mk9fSI8c].

Big hits have always been part of hockey, but the price paid in injuries is on the rise. According to data released last month at the National Academy of Neuropsychology's Sports Concussion Symposium in New York, 759 NHL players have been diagnosed with a concussion since 1997. For the ten seasons studied, that works out to about 76 players per season and 31 concussions per 1,000 hockey games. During the 2006-07 season, that resulted in 760 games missed by those injured players, an increase of 41% from 2005-06. Researchers have found two reasons for the jump in severity, the physics of motion and the ever-expanding hockey player.



http://draft.blogger.com/post-create.g?blogID=5873119327808729601In his book, The Physics of Hockey, Alain Haché, professor of physics at Canada's University of Moncton, aligns the concepts of energy, momentum and the force of impact to explain the power of mid-ice and board collisions.


As a player skates from a stop to full speed, his mass accelerates at an increasing velocity. The work his muscles contribute is transferred into kinetic energy which can and will be transferred or dissipated when the player stops, either through heat from the friction of his skates on the ice, or through a transfer of energy to whatever he collides with, either the boards or another player.



The formula for kinetic energy, K = (1/2)mass x velocity, represents the greater impact that a skater's speed (velocity) has on the energy produced. It is this speed that makes hockey a more dangerous sport than other contact sports, like football, where average player sizes are larger but they are moving at slower speeds (an average of 23 mph for hockey players in full stride compared to about 16 mph for an average running back in the open field).



http://draft.blogger.com/post-create.g?blogID=5873119327808729601So, when two players collide, where does all of that kinetic energy go? First, let's look at two billiard balls, with the exact same mass, shape and rigid structure. When two balls collide on the table, we can ignore the mass variable and just look at velocity. If the ball in motion hits another ball that is stationary, then the ball at rest will receive more kinetic energy from the moving ball so that the total energy is conserved. This will send the stationary ball rolling across the table while the first ball almost comes to a stop as it has transferred almost all of its stored energy.


Unfortunately, when human bodies collide, they don't just bounce off of each other. This "inelastic" collision results in the transfer of kinetic energy being absorbed by bones, tissues and organs. The player with the least stored energy will suffer the most damage from the hit, especially if that player has less "body cushion" to absorb the impact.



To calculate your own real world energy loss scenario, visit the Exploratorium's ["Science of Hockey" calculator | http://www.exploratorium.edu/hockey/checking2.html]. For both Sutter and Kostitsyn, they received checks from players who outweighed them by 20 pounds and were skating faster.



http://draft.blogger.com/post-create.g?blogID=5873119327808729601The average mass and acceleration variables are also growing as today's NHL players are getting bigger and faster. In a [study | http://www.ingentaconnect.com/content/nrc/apnm/2008/00000033/00000004/art00014] released in September, Art Quinney and colleagues at the University of Alberta tracked the physiological changes of a single NHL team over 26 years, representing 703 players. Not surprisingly, they found that defensemen are now taller and heavier with higher aerobic capacity while forwards were younger and faster. Goaltenders were actually smaller with less body mass but had better flexibility. However, the increase in physical size and fitness did not correspond with team success on the ice. But the checks sure hurt a lot more now.

630 Views 0 Comments Permalink Tags: hockey, concussion, sport_science, sports_cognition, sports_science, sport_skills, hockey_physics

!http://drp2010.googlepages.com/TheCatch.jpg|src=http://drp2010.googlepages.com/TheCatch.jpg|border=0!From: Sports Are 80 Percent Mental

With the crack of the bat, the ball sails deep into the outfield. The center-fielder starts his run back and to the right, trying to keep his eyes on the ball through its flight path. His pace quickens initially, then slows down as the ball approaches. He arrives just in time to make the catch.  What just happened? How did he know where to run and at what speed so that he and the ball intersected at the same exact spot on the field. Why didn't he sprint to the landing spot and then wait for the ball to drop, instead of his controlled speed to arrive just when the ball did? What visual cues did he use to track the ball's flight?  Did Willie Mays make the most famous catch in baseball history because he is one of the greatest players of all-time with years of practice? Maybe, but now take a look at this "Web Gems" highlight video of 12 and 13 year-olds from last year's Little League World Series :

Just like we learned in pitching and hitting, fielding requires extensive mental abilities involving eyes, brain, and body movements to accomplish the task. Some physical skills, such as speed, do play a part in catching, but its the calculations and estimating that our brain has to compute that we often take for granted. The fact that fielders are not perfect in this skill, (there are dropped fly balls, or bad judgments of ball flight), begs the question of how to improve? As we saw with pitching and hitting (and most sports skills), practice does improve performance. But, if we understand what our brains are trying to accomplish, we can hopefully design more productive training routines to use in practice.

Once more, we turn to Mike Stadler , associate professor of psychology at University of Missouri, who provides a great overview of current fielding research in his book, "The Psychology of Baseball".

One organization that does not take this skill for granted is NASA. The interception of a ballistic object in mid-flight can describe a left fielder's job or an anti-missile defense system or how a pilot maneuvers a spacecraft through a three dimensional space. In fact, Michael McBeath , a former post doctoral fellow at the NASA Ames Research Center , (now an associate professor at Arizona State University), has been studying fly ball catching since 1995, beginning with his research study, "[How baseball outfielders determine where to run to catch fly ball | http://www.sciencemag.org/cgi/content/abstract/268/5210/569]". 

!http://drp2010.googlepages.com/McBeathLOT.jpg|height=200|width=147|src=http://drp2010.googlepages.com/McBeathLOT.jpg|border=0! His team developed a rocket-science like theory named Linear Optical Trajectory to describe the process that a fielder uses to follow the path of a batted ball. LOT says the fielder will adjust his movement towards the ball so that its trajectory follows a straight line through his field of vision. Rather than compute the landing point of the ball, racing to that spot and waiting, the fielder uses the information provided by the path of the ball to constantly adjust his path so that they intersect at the right time and place.

The LOT theory is an evolution from an earlier theory called Optical Acceleration Cancellation (OAC) that had the same idea but only explained the fielder's tracking behavior in the vertical dimension. In other words, as the ball leaves the bat the fielder watches the ball rise in his field of vision. If he were to stand still and the ball was hit hard enough to land behind him, his eyes would track the ball up and over his head, or at a 90 degree angle. If the ball landed in front of him, he would see the ball rise and fall but his viewing angle may not rise above 45 degrees. LOT and OAC argue that the fielder repositions himself throughout the flight of the ball to keep this viewing angle between 0 and 90 degrees. If its rising too fast, he needs to turn and run backwards. If the viewing angle is low, then the fielder needs to move forward so that the ball doesn't land in front of him. He can't always make to the landing spot in time, but keeping the ball at about a 45 degree angle by moving will help ensure that he gets there in time. While OAC explained balls hit directly at a fielder, LOT helps add the side-to-side dimension, as in our example of above of a ball hit to the right of the fielder.  More recently, McBeath has successfully defended his LOT theory here and here .

The OAC and LOT theories do agree on a fundamental cognitive science debate. There are two theories of how we perceive the world and then react to it. First, the Information Processing (IP) theory likens our brain to a computer in that we have inputs, our senses that gather information about the world, a memory system that stores all of our past experiences and lessons learned, and a "CPU" or main processor that combines our input with our memory and computes the best answer for the given problem. So, IP would say that the fielder sees the fly ball and offers it to the brain as input, the brain then pulls from memory all of the hundreds or thousands of fly ball flight paths that have been experienced, and then computes the best path to the ball's landing point based on what it has "learned" through practice. McBeath's research and observations of fielders has shown that the processing time to accomplish this task would be too great for the player to react.

OAC and LOT subscribe to the alternate theory of human perception, Ecological Psychology (EP) . EP eliminates the call to memory from the processing and argues that the fielder observes the flight path of the ball and can react using the angle monitoring system. This is still up for debate as the IPers would argue "learned facts" like what pitch was thrown, how a certain batter hits those pitches, how the prevailing wind will affect the ball, etc. And, with EP, how can the skill differences between a young ballplayer and an experienced major leaguer be accounted for? What is the point of practice, if the trials and errors are not stored/accessed in memory?

Of course, we haven't mentioned ground balls and their behavior, due to the lack of research out there. The reaction time for a third baseman to snare a hot one-hopper down the line is much shorter. This would also argue in favor of EP, but what other systems are involved?

Arguing about which theory explains a fielder's actions is only productive if we can apply the research to create better drills and practices for our players. The LOT theory seems to be  getting there as an explanation, but there is still debate over EP vs. IP . So many sport skills rely on some of these foundations, that this type of research will continue to be relevant.  As with pitching and hitting, fielding seems to improve with practice.

And then there's the ultimate catch of all-time, that baseball fans have long been buzzing about.  Your reward for getting to the end of this article is this little piece of history...








You were looking for Willie Mays and "The Catch", weren't you?  This ball girl would own the best all-time fielding achievement... if it were real .  But no, just another digital editing marvel.  This was going to be a commercial for Gatorade, then it was put on the shelf.  After it was leaked onto YouTube, the video hoax became a viral hit.  So much so, that Gatorade left it on YouTube and did make a commercial out of it for the 2008 All-Star game.  But, you don't need to tell your Little Leaguers.  Let them dream...</span>

650 Views 0 Comments Permalink Tags: coaching, baseball, sport_science, evidence_based_coaching, sports_cognition, sports_science, vision_and_perception, sport_skills, sport_psychology, youth_sports

!http://drp2010.googlepages.com/TedWilliams.jpg|src=http://drp2010.googlepages.com/TedWilliams.jpg|border=0![Ted Williams | http://en.wikipedia.org/wiki/Ted_Williams], arguably the greatest baseball hitter of all-time, once said, "I think without question the hardest single thing to do in sport is to hit a baseball". Williams was the last major league player to hit .400 for an entire season and that was back in 1941, 67 years ago!  In the 2008 Major League Baseball season that just ended, the league batting average for all players was .264, while the strikeout percentage was just under 20%. So, in ten average at-bats, a professional ballplayer, paid millions of dollars per year, gets a hit less than 3 times but fails to even put the ball in play 2 times. So, why is hitting a baseball so difficult? What visual, cognitive and motor skills do we need to make contact with an object moving at 70-100 mph?

In the second of three posts in the Baseball Brains series, we'll take a quick look at some of the theory behind this complicated skill. Once again, we turn to [Professor Mike Stadler | http://honors.missouri.edu/staff/#stadler] and his book "The Psychology of Baseball" for the answers.  First, here's the "Splendid Splinter" in action:







A key concept of pitching and hitting in baseball was summed up long ago by Hall of Fame pitcher Warren Spahn, when he said, “Hitting is timing. Pitching is upsetting timing.” To sync up the swing of the bat with the exact time and location of the ball's arrival is the challenge that each hitter faces.  If the intersection is off by even tenths of a second, the ball will be missed. Just as  pitchers need to manage their targeting, the hitter must master the same two dimensions, horizontal and vertical. The aim of the pitch will affect the horizontal dimension while the speed of the pitch will affect the vertical dimension. The hitter's job is to time the arrival of the pitch based on the estimated speed of the ball while determining where, horizontally, it will cross the plate. The shape of the bat helps the batter in the horizontal space as its length compensates for more error, right to left. However, the narrow 3-4" barrel does not cover alot of vertical ground, forcing the hitter to be more accurate judging the vertical height of a pitch than the horizontal location. So, if a pitcher can vary the speed of his pitches, the hitter will have a harder time judging the vertical distance that the ball will drop as it arrives, and swing either over the top or under the ball.A common coach's tip to hitters is to "keep your eye on the ball" or "watch the ball hit the bat". As Stadler points out, doing both of these things is nearly impossible due to the concept known as "[angular velocity | http://en.wikipedia.org/wiki/Angular_velocity]". Imagine you are standing on the side of freeway with cars coming towards you. Off in the distance, you are able to watch the cars approaching your position with relative ease, as they seem to be moving at a slower speed. As the cars come closer and pass about a 45 degree angle and then zoom past your position, they seem to "speed up" and you have to turn your eyes/head quickly to watch them. While the car is going at a constant speed, its angular velocity increases making it difficult to track.



!http://drp2010.googlepages.com/AdairSwing.jpg|height=232|width=420|src=http://drp2010.googlepages.com/AdairSwing.jpg|border=0!
This same concept applies to the hitter. As the graphic above shows (click to enlarge), the first few feet that a baseball travels when it leaves a pitcher's hand is the most important to the hitter, as the ball can be tracked by the hitter's eyes. As the ball approaches past a 45 degree angle, it is more difficult to "keep your eye on the ball" as your eyes need to shift through many more degrees of movement. Research reported by Stadler shows that hitters cannot watch the entire flight of the ball, so they employ two tactics.

First, they might follow the path of the ball for 70-80% of its flight, but then their eyes can't keep up and they estimate or extrapolate the remaining path and make a guess as to where they need to swing to have the bat meet the ball. In this case, they don't actually "see" the bat hit the ball. Second, they might follow the initial flight of the ball, estimate its path, then shift their eyes to the anticipated point where the ball crosses the plate to, hopefully, see their bat hit the ball. This inability to see the entire flight of the ball to contact point is what gives the pitcher the opportunity to fool the batter with the speed of the pitch. If a hitter is thinking "fast ball", their brain will be biased towards completing the estimated path across the plate at a higher elevation and they will aim their swing there. If the pitcher actually throws a curve or change-up, the speed will be slower and the path of the ball will result in a lower elevation when it crosses the plate, thus fooling the hitter.As in pitching, the eyes and brain determine much of the success for hitters. The same concepts apply to hitting any moving object in sports; tennis, hockey, soccer, etc.  Over time, repeated practice may be the only way to achieve the type of reaction speed that is necessary, but even for athletes who have spent their whole lives swinging a bat, there seems to be human limitation to success.  Tracking a moving object through space also applies to catching a ball, which we'll look at next time.</span>

623 Views 0 Comments Permalink Tags: coaching, baseball, sport_science, evidence_based_coaching, sports_science, vision_and_perception, sport_skills, sport_psychology, youth_sports

 

!http://1.bp.blogspot.com/_3b3RMRFwqU0/SJ39bdJ06LI/AAAAAAAAAZU/4DN1--2fQ-4/s200-R/GoldMedal.jpg|style=border: 0pt none ;|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SJ39bdJ06LI/AAAAAAAAAZU/4DN1--2fQ-4/s200-R/GoldMedal.jpg!Imagine winning a gold medal at the Beijing Olympics .  No really, go ahead, close your eyes and visualize it.  What did you see?  Were you standing on the medal platform looking out at the crowd, waving and taking in the scene through your own eyes, or were you a spectator in the crowd watching yourself getting the medal put around your neck?  This choice between "first-person" or "third-person" visualization actually makes a difference on our motivation to achieve a future goal.


Noelia A. Vasquez, at York University and Roger Buehler, at Wilfrid Laurier University wanted to see if there was a link between our visualization perspective and our motivation level to achieve the imagined goal.  They asked 47 university students to imagine the successful completion of a performance task that was in their near future, whether it be a speech in a class or an upcoming athletic competition.  They were also asked to assume that the task went extremely well.  One group of students were asked to imagine this scene "through their own eyes" seeing the environment as they would actually experience it.  The second group was told to use the third-person perspective, pretending they were "in the crowd" watching themselves as others would see them achieving this goal.  Next, they were given a survey that asked each group how motivated they were to now go make this successful scene a reality. 




As hypothesized, the group that saw the scene through their audience's eyes (third-person) ranked their motivation to now succeed significantly higher than those that imagined it through their own eye (first-person).  The authors' explanation for this is the perceived additional importance attached to the task when we consider other peoples' opinion of us and our natural desire to increase our status in our peer group.  Seeing this newly elevated social acceptance and approval of ourselves from the eyes of our peers motivates us even more to reach for our goals.




The road to achievements like an Olympic gold medal is a long one with many steps along the way.  Over the years, as athletes maintain their training regimen, they can keep imagining the future goal, but they may need to also look back and recognize the improvements they have made over time.  This "progress to date" assessment will also provide motivation to keep going once they realize the hard work is actually having the desired effect and moving them along the desired path.  So, as they review their past to present progress, does the first or third person perspective make a difference there as well?




Researchers from Cornell, Yale and Ohio State, led by Thomas Gilovich , professor of psychology at Cornell, designed an experiment to find out.  They recruited a group of university students who had described their high-school years as "socially awkward" to now recall those years and compare them with their social skill in college.  The first group was asked to recall the past from a first-person perspective, just as their memories would provide them.  The second group was asked to remember themselves through the perspective of their classmates (third-person).  Next, each group was asked to assess the personal change they had accomplished since then.




As predicted, the group that had recalled their former selves in the third person reported greater progress and change towards a more social and accepted person in college than the group that remembered in the first-person.  "We have found that perspective can influence your interpretation of past events. In a situation in which change is likely, we find that observing yourself as a third person -- looking at yourself from an outside observer's perspective -- can help accentuate the changes you've made more than using a first-person perspective," says Gilovich.  "When participants recalled past awkwardness from a third-person perspective, they felt they had changed and were now more socially skilled," said Lisa K. Libby, an assistant professor of psychology at Ohio State University. "That led them to behave more sociably and appear more socially skilled to the research assistant."




So, whether looking forward or backward, seeing yourself through other's eyes seems to provide more motivation to not only continue the road to success, but to appreciate the progress you have made. 




Then the actual day of competition arrives.  It is one hour before you take your position on the starting blocks at the "Bird's Nest" stadium in Beijing or on the mat at the National Indoor Stadium for the gymnastics final.  Should you be imagining the medal ceremony and listening to your country's national anthem at that point?  In a recent Denver Post article , Peter Haberl, senior sports psychologist for the U.S. Olympic Committee says, "It takes a great deal of ability and skill to stay focused on the task at hand."  He distinguishes between an "outcome" goal, (receiving the medal) and "performance" (improving scores/times) and "process" (improving technique) goals.  "The difference is that these types of goals are much more under the control of the athlete," explains Haberl. "The process goal, in particular, directs attention to the here and now, which allows the athlete to totally focus on the doing of the activity; this is key to performing well.  This sounds simple but it really is quite difficult because the mind takes you to the past and the future all the time, particularly in the Olympic environment with its plethora of distractions and enticing rewards." 




Mental imagery is a well-known tool for every athlete to make distant and difficult goals seem attainable.  By seeing your future accomplishments through the eyes of others, you can attach more importance and reward to achieving them.  Just imagine yourself in London in 2012 !



<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!
<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Vasquez&amp;rft.aufirst=Noelia&amp;rft.aumiddle=A&amp;rft.au=Noelia+ Vasquez&amp;rft.title=PersonalityandSocialPsychologyBulletin&amp;rft.atitle=SeeingFutureSuccess%3ADoesImageryPerspectiveInfluenceAchievementMotivation%3F&amp;rft.date=2007&amp;rft.volume=33&amp;rft.issue=10&amp;rft.spage=1392&amp;rft.epage=1405&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fpsp.sagepub.com%2Fcgi%2Fcontent%2Fabstract%2F33%2F10%2F1392&amp;rft.id=info:PMID/17933735">Vasquez, N.A. (2007). Seeing Future Success: Does Imagery Perspective Influence Achievement Motivation?. Personality and Social Psychology Bulletin, 33(10), 1392-1405.




<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Libby&amp;rft.aufirst=Lisa&amp;rft.aumiddle=K&amp;rft.au=Lisa+ Libby&amp;rft.au=RichardPEibach&amp;rft.au=Thomas+Gilovich&amp;rft.title=JournalofPersonalityandSocialPsychology&amp;rft.atitle=Here%27sLookingatMe%3ATheEffectofMemoryPerspectiveonAssessmentsofPersonal+Change.&amp;rft.date=2005&amp;rft.volume=88&amp;rft.issue=1&amp;rft.spage=50&amp;rft.epage=62&amp;rft.genre=article&amp;rft.id=info:DOI/10.1037%2F0022-3514.88.1.50">Libby, L.K., Eibach, R.P., Gilovich, T. (2005). Here's Looking at Me: The Effect of Memory Perspective on Assessments of Personal Change.. Journal of Personality and Social Psychology, 88(1), 50-62. DOI: 10.1037/0022-3514.88.1.50</font>

595 Views 0 Comments Permalink Tags: training, olympics, coaching, evidence_based_coaching, sports_cognition, sports_science, sport_skills, mental_imagery

 

From:  Sports Are 80 Percent Mental - Getting Sport Science Out Of The Lab And Onto The Field

You are a coach, trying to juggle practice

plans, meetings, game prep and player issues while trying to stay

focused on the season's goals.  At the end of another long day, you see

this in your inbox:

 

MEMO

To:          All Head Coaches

From:      Athletic Director

Subject:  Monthly Reading List to Keep Up with Current Sport Science Research

  • Neuromuscular Activation of Triceps Surae Using Muscle Functional MRI and EMG

  • Positive effects of intermittent hypoxia (live high:train low) on

exercise performance are not mediated primarily by augmented red cell

volume

  • Physiologic Left Ventricular Cavity Dilatation in Elite Athletes

  • The Relationships of Perceived Motivational Climate to Cohesion and Collective Efficacy in Elite Female Teams

 

Just some light reading before bedtime...  This is an obvious

exaggeration (and weak attempt at humor) of the gap between sport

science researchers and practitioners.  While those are actual research

paper titles from the last few years under the heading of "sport

science", the intended audience was most likely not coaches or

athletes, but rather fellow academic peers.  The real question is

whether the important conclusions and knowledge captured in all of this

research is ever actually used to improve athletic performance?  How

can a coach or athlete understand, combine and transfer this

information into their game?

 

David Bishop of the Faculty of Exercise and Sport Science at the University of Verona

has been looking at this issue for several years.  It started with a

roundtable discussion he had at the 2006 Congress of the Australian

Association for Exercise and Sports Science with several academic sport

scientists (see: Sports-Science Roundtable: Does Sports-Science Research Influence Practice?

)  He asked very direct questions regarding the definition of sport

science and whether the research always needs to be "applied" versus

establishing a "basic" foundation.  The most intriguing question was

whether there already is ample research that could applied, but it

suffered from the lack of a good translator to interpret and

communicate to the potential users - coaches and athletes.  The panel

agreed that was the missing piece, as most academic researchers just

don't have the time to deliver all of their findings directly to the

field.

 

In a follow-up to this discussion, Bishop recently published his proposed solution titled,  in Sports Medicine

(see citation below).  In it, he calls for a new framework for

researchers to follow when designing their studies so that there is

always a focus on how the results will directly improve athletic

performance.  He calls for a greater partnership role between

researchers and coaches to map out a useful agenda of real world

problems to examine.  He admits that this model, if implemented, will

only help increase the potential for applied sport science.  The

"middleman" role is still needed to bring this information to the front

lines of sports.

 

The solution for this "gathering place" community seems perfect for Web 2.0 technology.  One

specific example is an online community called iStadia.com.

Keith Irving and Rob Robson, two practicing sport science consultants,

created the site two years ago to fill this gap.  Today, with over 600

members, iStadia is approaching the type of critical mass that will be

necessary to bring all of the stakeholders together.  Of course, as

with any online community, the conversations there are only as good as

the participants want to make it.  But, with the pressure on coaches to

improve and the desire of sport scientists to produce relevant

knowledge, there is motivation to make the connection.

 

Another trend favoring more public awareness of sport science is the

additional, recent media attention, especially related to the upcoming

Beijing Olympics.  In an earlier post, Winning Olympic Gold With Sport Science, I highlighted a feature article from USA Today.  This month's Fast Company also picks up on this theme with their cover article, Innovation of Olympic Proportions,

describing several high-tech equipment innovations that will be used at

the Games.  Each article mentions the evolving trust and acceptance of

sport science research by coaches and athletes.  When they see actual

products, techniques and, most importantly, results come from the

research, they cannot deny its value.         

 

Source:

Bishop, D. (2008). An Applied Research Model for the Sport Sciences. Sports Medicine, 38(3), 253-263.

557 Views 0 Comments Permalink Tags: olympics, sport_science, evidence_based_coaching, relevant_research, sports_cognition, sports_science


Dan Peterson

Dan Peterson

Member since: Oct 1, 2007

A Look Inside the Mind of the Athlete - You can find a mix of sport science, cognitive science, coaching and performance stories here as I focus on the "thinking" side of sports. My "home" is at http://blog.80percentmental.com. Thanks for stopping by!

View Dan Peterson's profile

Recent Comments

No recent comments.