Skip navigation

!http://drp2010.googlepages.com/golfputt.jpg|src=http://drp2010.googlepages.com/golfputt.jpg|border=0!If there is a poster child sport for our favorite phrase, "[Sports Are 80 Percent Mental | http://blog.80percentmental.com/]", it must be golf.  Maybe its the slow pace of play that gives us plenty of time to think between shots.  Maybe its the "on stage" performance feeling we get when we step up to that first tee in front of our friends (or strangers!)  Maybe its the "high" of an amazing approach shot that lands 3 feet from the cup followed by the "low" of missing the birdie putt.   From any angle, a golf course is the sport psychologist's laboratory to study the mix of emotions, confidence, skill execution and internal cognitive processes that are needed to avoid buying rounds at the 19th hole.  Last time, we looked at some of the recent research on putting mechanics, but, as promised, we now turn to the mental side of putting.  Sian Beilock and her team at the University of Chicago's Human Performance Lab recently released the latest of a string of research studies on sports performance, or more specifically, how not to choke under pressure.  Lucky for us, they chose putting as their sport skill of choice.  This ties in with Dr. Beilock's theory of embodied cognition that we featured in Watching Sports Is Good For Your Brain.

 

An underlying theme to this work is the concept of automaticity , or the ability to carry out sport skills without consciously thinking about them.  Performing below expectations (i.e. choking) starts when we allow our minds to step out of this automatic mode and start thinking about the steps to our putting stroke and all of those "swing thoughts" that come with it ("keep your elbows in", "head down", "straight back").  Our brain over analyzes and second-guesses the motor skills we have learned from hundreds of practice putts.  Previously, we looked at automaticity in other sports.   Of course, a key distinction to the definition of choking is that you are playing "well below expectations".  If you normally shoot par, but now start missing easy putts, then there may be distractions that are taking you out of your normal flow.  Choking implies a temporary and abnormal event.  Automaticity theory would claim that it is these distractions from some perceived pressure to perform that are affecting your game.

 

Most research into sport skill performance divides the world into two groups, novices and experts.  Most sports have their own measures of where the dividing line is between these groups.  Expertise would imply performance results not just experience.  So, a golfer who has been hacking away for 20 years but still can't break 100 would still be put in the "novice" category.  Sport scientists design experiments that compare performance between the groups given some variables, and then hypothesize on the reason for the observed differences.  Beilock, et al have looked at golf putting from several different angles over the years.  Their research builds on itself, so let's review in reverse chronological order.

 

Back in 2001, they began by comparing the two competing theories of choking, distraction theory vs. explicit monitoring theory, and designed a putting experiment to find the better explanation.  Distraction theory explains choking by assuming that the task of putting requires your direct attention and that high pressure situations will cause you to perform dual tasks - focus on your putting but also think about the pressure.  This theory assumes there is no automaticity in skill learning and that we have to focus our attention on the skill every time.  Explicit monitoring theory claims that over time, as we practice a skill to the point of becoming an "expert", we proceduralize the task so that it becomes "automatic".  Then, during a high pressure situation, our brain becomes so concerned about performance that it takes us out of automatic mode and tries to focus on each step of the task.  The research supported the explicit monitoring theory as it was shown that the golf putting task was affected by distractions and pressure for the experts but not the novice putters.

 

So, how do we block out the pressure, so that our automaticity can kick in?  Another 2001 study by Beilock looked at mental imagery during putting.  Using the same explicit monitoring theory, should we try to think positive thoughts, like "this ball is going in the hole" or "I have made this putt many times"?  Also, what happens if a stray negative thought, "don't miss this one!" enters our brain?  Should we try to suppress it and replace it with happy self-talk?  She set up four groups, one receiving positive comments, one receiving negative comments, one receiving negative comments followed by positive comments and one receiving none as a control group.  As expected, the happy people did improve their putting over the course of the trials, while the negative imagery hurt performance.  But, the negative replaced with positive thought group did not show any more improvement over the control group.  So, when faced with a high pressure, stressful situation ripe with the possibilities of choking, try to repeat positive thoughts, but don't worry too much if the occasional doubt creeps in.

 

Our strategy towards putting should also vary depending on our current skill level.  While learning the intricacies of putting, novices should use different methods than experts, according to a 2004 study by Beilock, et al .  Novice golfers need to pay attention to the step by step components of their swing, and they perform better when they do focus on the declarative knowledge required.  Expert golfers, however, have practiced their swing or putt so often that it has become "second nature" to the point that if they are told to focus on the individual components of their swing, they perform poorly.  The experiment asked both novices and expert golfers to first focus on their actual putting stroke by saying the word "straight" when hitting the ball and to notice the alignment of the putter face with the ball.  Next, they were asked to putt while also listening for a certain tone played in the background.  When they heard the tone they were to call it out while putting.  The first scenario, known as "skill-focused", caused the novices to putt more accurately but the experts to struggle.  The second scenario, called "dual-task", distracted the novices enough to affect their putts, while the experts were not bothered and their putting accuracy was better.  Beilock showed that novices need the task focus to succeed while they are learning to putt, while experts have internalized the putting stroke so that even when asked to do two things, the putting stroke can be put on "auto-pilot".

 

Finally, in 2008, Beilock's team added one more twist to this debate.  Does a stress factor even affect a golfer's performance in their mind before they putt?  This time, golfers, divided into the usual novice and expert groups, were asked to first imagine or "image execute" themselves making a putt followed by an actual putt.  The stress factor was to perform one trial under a normal, "take all the time you need" time scenario and then another under a speeded or time-limited scenario.  The novices performed better under the non-hurried scenario in imagining the putt first followed by the actual putt.  The experts, however, actually did better in the hurried scenario and worse in the relaxed setting.  Again, the automaticity factor explains the differences between the groups.

 

The bottom line throughout all of these studies is that if you're learning to play golf, which includes putting, you should focus on your swing/stroke but beware of the distractions which will take away your concentration.  That seems pretty logical, but for those that normally putt very well, if you feel stress to sink that birdie putt, don't try to focus in on the mechanics of your stroke.  Trust the years of experience that has taught your brain the combination of sensorimotor skills of putting.

 

!http://drp2010.googlepages.com/TyWebb.jpg|style=cursor: pointer; float: left; height: 123px; margin: 0pt 10px 10px 0pt; width: 164px;|alt=|src=http://drp2010.googlepages.com/TyWebb.jpg|border=0!Just remember the Chevy Chase/Ty Webb philosophy ; "I'm going to give you a little advice. There's a force in the universe that makes things happen. And all you have to do is get in touch with it, stop thinking, let things happen, and be the ball....  Nah-na-na-na, Ma-na-na-na...."

 

 

!http://www.researchblogging.org/public/citation_icons/rb2_mid.png|style=border: 0pt none;|alt=ResearchBlogging.org|src=http://www.researchblogging.org/public/citation_icons/rb2_mid.png!</span><span style="font-size: 130%;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofExperimentalPsychology%3AGeneral&amp;rft.id=info:DOI/10.1037%2F%2F0096-3445.130.4.701&amp;rft.atitle=Onthefragilityofskilledperformance%3AWhatgovernschokingunderpressure%3F&amp;rft.date=2001&amp;rft.volume=130&amp;rft.issue=4&amp;rft.spage=701&amp;rft.epage=725&amp;rft.artnum=http%3A%2F%2Fdoi.apa.org%2Fgetdoi.cfm%3Fdoi%3D10.1037%2F0096-3445.130.4.701&amp;rft.au=SianL.Beilock&amp;rft.au=ThomasH.Carr&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CCognitivePsychology%2CKinesiology">Sian L. Beilock, Thomas H. Carr (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130 (4), 701-725 DOI: 10.1037//0096-3445.130.4.701

<span style="font-size: 130%;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofSportandExercisePsychology&amp;rft.id=info:DOI/&amp;rft.atitle=%22Don%27tMiss%21%22TheDebilitatingEffectsofSuppressiveImageryonGolfPuttingPerformance&amp;rft.date=2001&amp;rft.volume=23&amp;rft.issue=3&amp;rft.spage=&amp;rft.epage=&amp;rft.artnum=http%3A%2F%2Fwww.humankinetics.com%2FJSEP%2Fviewarticle.cfm%3Fjid%3D6jc24CqQ6na88Frw6rx62r6s6wh42uf66kn8628B6ht23%26aid%3D1102%26site%3D6jc24CqQ6na88Frw6rx62r6s6wh42uf66kn8628B6ht23&amp;rft.au=SianL.Beilock%3BJamesA.Afremow%3BAmyL.Rabe%3BThomasH.Carr&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CCognitivePsychology%2C+Kinesiology">Sian L. Beilock; James A. Afremow; Amy L. Rabe; Thomas H. Carr (2001). "Don't Miss!" The Debilitating Effects of Suppressive Imagery on Golf Putting Performance Journal of Sport and Exercise Psychology, 23 (3)

<span style="font-size: 130%;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=PsychonomicBulletin%26Review&amp;rft.id=info:DOI/&amp;rft.atitle=Hastedoesnotalwaysmakewaste%3AExpertise%2Cdirectionofattention%2Candspeedversusaccuracyinperformingsensorimotorskills&amp;rft.date=2004&amp;rft.volume=11&amp;rft.issue=2&amp;rft.spage=373&amp;rft.epage=379&amp;rft.artnum=http%3A%2F%2Fhpl.uchicago.edu%2FPublications%2Fpapers_reprints%2FPBR2004.pdf&amp;rft.au=BeilockS.L.%3BBertenthalB.I.%3BMcCoyA.M.%3BCarrT.H.&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CCognitivePsychology%2CKinesiology">Beilock S.L.; Bertenthal B.I.; McCoy A.M.; Carr T.H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills  Psychonomic Bulletin & Review, 11 (2), 373-379

<span style="font-size: 130%;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=TheQuarterlyJournalofExperimentalPsychology&amp;rft.id=info:DOI/10.1080%2F17470210701625626&amp;rft.atitle=Puttinginthemindversusputtingonthegreen%3AExpertise%2Cperformancetime%2Candthelinkingofimageryandaction&amp;rft.date=2008&amp;rft.volume=61&amp;rft.issue=6&amp;rft.spage=920&amp;rft.epage=932&amp;rft.artnum=http%3A%2F%2Fwww.informaworld.com%2Fopenurl%3Fgenre%3Darticle%26doi%3D10.1080%2F17470210701625626%26magic%3Dcrossref%7C%7CD404A21C5BB053405B1A640AFFD44AE3&amp;rft.au=SianBeilock&amp;rft.au=SaraGonso&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CCognitivePsychology%2C+Kinesiology">Sian Beilock, Sara Gonso (2008). Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action The Quarterly Journal of Experimental Psychology, 61 (6), 920-932 DOI: 10.1080/17470210701625626 </span>

688 Views 0 Comments Permalink Tags: golf, sport_science, evidence_based_coaching, sports_cognition, sport_psychology, sian_beilock, putting, putt, golf_tips, golf_skills

!http://drp2010.googlepages.com/Tigerputting.jpg|height=200|width=139|src=http://drp2010.googlepages.com/Tigerputting.jpg|border=0!If Mark Twain thinks golf is "a good walk spoiled", then putting must be a brief pause to make you reconsider ever walking again.  With about 50% of our score being determined on the green, we are constantly in search of the "secret" to getting the little white ball to disappear into the cup.  Lucky for us, there is no shortage of really smart people also looking for the answer.  The first 8 months of 2008 have been no exception, with a golf cart full of research papers on just the topic of putting.  Is the secret in the mechanics of the putt stroke or maybe the cognitive set-up to the putt or even the golfer's psyche when stepping up to the ball?  This first post will focus on the mechanical side and then we'll follow-up next time with a look inside the golfer's mind.

 

Let's start with a tip that most golf instructors would give, "Keep your head still when you putt".  Jack Nicklaus said it in 1974, "the premier technical cause of missed putts is head movement" (from "Golf My Way") and Tiger Woods said it in 2001, "Every good putter keeps the head absolutely still from start to finish" (from "How I Play Golf").  Who would argue with the two greatest golfers of all time?  His name is Professor Timothy Lee , from McMaster University, and he wanted to test that observation.  So, he gathered two groups of golfers, amateurs with handicaps of 12-40, and professionals with scratch handicaps.  Using an infrared tracking system, his team tracked the motion of the putter head and the golfer's head during sixty putts.

 

As predicted, the amateurs' head moved back in unison with their putter head, something Lee calls an "allocentric" movement, which agrees with the advice that novice golfers move their head.  However, the expert golfers did not keep their head still, but rather moved their heads slightly in the opposite direction of the putter head.  On the backswing, the golfer's head moved slightly forward; on the forward stroke, the head moved slightly backward.  This "egocentric" movement may be the more natural response to maintain a centered, balanced stance throughout the stroke.  "The exact reasons for the opposite coordination patterns are not entirely clear," explains Lee. "However, we suspect that the duffers tend to just sway their body with the motions of the putter. In contrast, the good golfers probably are trying to maintain a stable, central body position by counteracting the destabilization caused by the putter backswing with a forward motion of the head. The direction of head motion is then reversed when the putter moves forward to strike the ball."  Does that mean that pro golfers like Tiger are not keeping their heads still?  No, just that you may not <b>have</b> to keep your head perfectly still to putt effectively.

 

So, what if you do have the bad habit of moving your head?  Just teach yourself to change your putting motion and you will be cutting strokes off of your score, right?  Well, not so fast.  Simon Jenkins of Leeds Metropolitan University tested  15 members of the PGA European Tour to see if they could break old physical habits during putting.  His team found that players who usually use shoulder movement in their putting action were not able to change their ways even when instructed to use a different motion.  Old habits die hard.

 

Let's say you do keep your head still (nice job!), but you still 3-putt most greens?  What's the next step on the road to birdie putts?  Of the three main components of a putt, (angle of the face of the putter head on contact, putting stroke path and the impact point on the putter), which has the greatest effect on success?  Back in February, Jon Karlsen of the Norwegian School of Sport Sciences in Oslo, asked 71 elite golfers (mean handicap of 1.8) to make a total of 1301 putts (why not just 1300?) from about 12 feet to find out.  His results showed that face angle was the most important (80%), followed by putter path (17%) and impact point (3%).

 

OK, forget the moving head thing and work on your putter blade angle at contact and you will be taking honors at every tee.  Wait, Jon Karlsen came back in July with an update .  This time he compared green reading, putting technique and green surface inconsistencies to see which of those variables we should discuss with our golf pro.  Forty-three expert golfers putted 50 times from varying distances.  Results showed that green reading (60%) was the most dominant factor for success with technique (34%) and green inconsistency (6%) trailing significantly.

 

!http://drp2010.googlepages.com/breakmaster.jpg|src=http://drp2010.googlepages.com/breakmaster.jpg|border=0!So, after reading all of this, all you really need is something like the BreakMaster, which will help you read the breaks and the slope to the hole!  Then, keep the putter blade square to the ball and don't move your head, at least not in an allocentric way, that is if you can break your bad habit of doing it.  No problem, right?  Well, next time we'll talk about your brain's attitude towards putting and all the ways your putt could go wrong before you even hit it!

 

!http://www.researchblogging.org/public/citation_icons/rb2_mid.png|style=border: 0pt none ;|alt=ResearchBlogging.org|src=http://www.researchblogging.org/public/citation_icons/rb2_mid.png!




<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofMotorBehavior&amp;rft.id=info:DOI/10.3200%2FJMBR.40.4.267-272&amp;rft.atitle=Head%E2%80%93PutterCoordinationPatternsinExpertandLessSkilledGolfers&amp;rft.date=2008&amp;rft.volume=40&amp;rft.issue=4&amp;rft.spage=267&amp;rft.epage=272&amp;rft.artnum=http%3A%2F%2Fheldref.metapress.com%2Fopenurl.asp%3Fgenre%3Darticle%26id%3Ddoi%3A10.3200%2FJMBR.40.4.267-272&amp;rft.au=TimothyD.Lee&amp;rft.au=TadaoIshikura&amp;rft.au=StefanKegel&amp;rft.au=DaveGonzalez&amp;rft.au=StevenPassmore&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CNeuroscience%2CCognitivePsychology%2CCognitiveNeuroscience%2C+Kinesiology"  style="font-size:130%;">Timothy D. Lee, Tadao Ishikura, Stefan Kegel, Dave Gonzalez, Steven Passmore (2008). Head–Putter Coordination Patterns in Expert and Less Skilled Golfers Journal of Motor Behavior, 40 (4), 267-272 DOI: 10.3200/JMBR.40.4.267-272

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=InternationalJournalofSportsScience&amp;Coaching&amp;rft.id=info:DOI/&amp;rft.atitle=CanEliteTournamentProfessionalGolfersPreventHabitualActionsinTheirPuttingActions%3F&amp;rft.date=2008&amp;rft.volume=3&amp;rft.issue=1&amp;rft.spage=117&amp;rft.epage=127&amp;rft.artnum=http%3A%2F%2Fwww.ingentaconnect.com%2Fcontent%2Fmscp%2Fijssc%2F2008%2F00000003%2FA00101s1%2Fart00018&amp;rft.au=Jenkins%2CSimon&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CKinesiology%2CCognitive+Psychology"  style="font-size:130%;">Jenkins, Simon (2008). Can Elite Tournament Professional Golfers Prevent Habitual Actions in Their Putting Actions?  International Journal of Sports Science & Coaching, 3 (1), 117-127

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofSportsSciences&amp;rft.id=info:DOI/10.1080%2F02640410701530902&amp;rft.atitle=Thestrokehasonlyaminorinfluenceondirectionconsistencyingolfputtingamongeliteplayers&amp;rft.date=2007&amp;rft.volume=26&amp;rft.issue=3&amp;rft.spage=243&amp;rft.epage=250&amp;rft.artnum=http%3A%2F%2Fwww.informaworld.com%2Fopenurl%3Fgenre%3Darticle%26doi%3D10.1080%2F02640410701530902%26magic%3Dcrossref%7C%7CD404A21C5BB053405B1A640AFFD44AE3&amp;rft.au=JonKarlsen&amp;rft.au=GeraldSmith&amp;rft.au=JohnnyNilsson&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CKinesiology%2CCognitive+Psychology"  style="font-size:130%;">Jon Karlsen, Gerald Smith, Johnny Nilsson (2007). The stroke has only a minor influence on direction consistency in golf putting among elite players Journal of Sports Sciences, 26 (3), 243-250 DOI: 10.1080/02640410701530902 </span>

565 Views 0 Comments Permalink Tags: golf, tiger_woods, sport_science, science_in_sports, putting, jack_nicklaus

!http://drp2010.googlepages.com/coffee.jpg|style=cursor: pointer; float: left; height: 151px; margin: 0pt 10px 10px 0pt; width: 126px;|alt=|src=http://drp2010.googlepages.com/coffee.jpg|border=0!For an athlete, it seems to good to be true.  A "sports supplement" that increases alertness, concentration, reaction time and focus while decreasing muscle fatigue or at least the perception of fatigue.  It can even shorten recovery time after a game.  HGH? EPO? Steroids?   Nope, just a grande cup of Juan Valdez's Best, Liquid Lightning, Morning Mud, Wakey Juice, Mojo, Java, aka coffee.  Actually, the key ingredient is caffeine which has been studied repeatedly for its ergogenic (performance-enhancing) benefits in sports, both mentally and physically.  Time after time, caffeine proves itself as a relatively safe, legal and inexpensive boost to an athlete.

 

 

 

Or does it?  If caffeine is such a clear cut performance enhancing supplement, why did the World Anti-Doping Agency (WADA), who also monitors this month's Beijing Olympics for the International Olympic Committee (IOC), first add caffeine to its banned substance list, only to remove it in 2004?   At the time that it was placed on the banned list, the threshold for a positive caffeine test was set to a post-exercise urinary caffeine concentration of 12 µg/ml (about 3-4 cups of strong coffee).   However, more recent research has shown that caffeine has ergogenic effects at levels as low as the equivalent of 1-2 cups of coffee.  So, it was hard for WADA to know where to draw the line between athletes just having a few morning cups of coffee/tea or maybe some chocolate bars and athletes that were intentionally consuming caffeine to increase their performance level.  However, caffeine is still on the WADA monitoring list as a substance to screen for and watch for patterns of use.

 

Meanwhile, athletes are still convinced that caffeine helps them.  In a recent survey from Liverpool John Moores University , 480 athletes were interviewed about their caffeine use.  One third of track and field athletes and 60% of cyclists reported using caffeine specifically to give them a boost in competition.  In addition, elite-level athletes interviewed were more likely to rely on caffeine than amateurs.  Dr. Neil Chester , co-leader of the study, commented about the confusion created by the WADA status change for caffeine, "There's been a lack of communication from WADA and there is a question about whether or not sporting authorities are condoning its use. Ultimately there is a need to clarify the use of caffeine within the present anti-doping legislation."

 

So, have athletes found a loophole to exploit that gives them an edge?  Dr. Carrie Ruxton recently completed a literature survey to summarize 41 double-blind, placebo-controlled trials published over the past 15 years to establish what range of caffeine consumption would maximize benefits and minimize risk for cognitive function, mood, physical performance and hydration.  The studies were divided into two categories, those that looked at the cognitive effects and those that looked at physical performance effects.  The results concluded that there was a significant improvement in cognitive functions like attention, reaction time and mental processing as well as physical benefits described as increased "time to exhaustion" and decreased "perception of fatigue" in cycling and running tests.  Longer, endurance type exercise showed greater results than short-term needs for energy.

 

Given these results, how exactly does caffeine perform these wonderful tricks?  Dr. Ruxton explains from the study, "Caffeine is believed to impact on mood and performance by inhibiting the binding of both adenosine and benzodiazepine receptor ligands to brain membranes.  As these neurotransmitters are known to slow down brain activity, a blockade of their receptors lessens this effect. "  Bottom line, the chemicals in your brain that would cause you to feel tired are blocked, giving you a feeling of ongoing alertness.  Your body still needs the sleep, caffeine just delays the feeling of being tired.

 

As to the physiological benefits, caffeine has also been shown to stimulate the release of fat into the bloodstream.  The early conclusion was that the increased free fatty acids in the blood would allow our muscles to use fat as fuel and spare glycogen (carbohydrates) allowing us to exercise longer.  Another theory is that caffeine stimulates the central nervous system reducing our perception of effort so that we feel that we can continue at an increased pace for longer periods.The discussion on glycogen has recently taken another interesting twist; caffeine's apparent ability to replenish glycogen (the body's primary fuel source) more rapidly after an intense workout.  A team at the Garvan Institute for Medical Research has found that athletes who consumed a combination of carbohydrates and caffeine following an exhaustive exercise had 66% more glycogen in their muscles four hours later, compared to when they consumed carbohydrates alone.  They asked cyclists to pedal to exhaustion in the lab, then gave them a drink that contained either carbohydrates with caffeine or just carbohydrates (the cyclists did not know which drink they were getting).  They repeated the process 7-10 days later and reversed the groups.  Muscle biopsies and blood samples were tested for levels of glycogen after each trial period.  The researchers did not have an explanation for the increased levels of glycogen resulting from the caffeine-spiked juice.  One theory is the higher circulating blood glucose and plasma insulin levels caused by the caffeine were key factors.  In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

 

So, before you start drinking the Starbucks by the gallon, here are some guidelines.  You can consume 2-2.5 mg of caffeine per pound of body weight daily to achieve its ergogenic effects.  This equates to 250-312 mg for a 125-pound woman and 360-450 mg for a 180-pound man.  More is not better, as other research has shown a decline in benefit and an increase in caffeine's side effects beyond this level.  One "grande" cup (16 oz.) of Starbucks coffee contains about 320-500 mg of caffeine, while a 12 oz. can of soda will provide 35-70 mg of caffeine.  Maybe we'll see the ultimate sports drink soon, kind of like Monster meets Gatorade... wait, its already here: Lucozade Sport with Caffeine Boost!

!http://www.researchblogging.org/public/citation_icons/rb2_large_gray.png|style=border: 0pt none;|alt=ResearchBlogging.org|src=http://www.researchblogging.org/public/citation_icons/rb2_large_gray.png!



<span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=NutritionBulletin&amp;rft.id=info:DOI/10.1111%2Fj.1467-3010.2007.00665.x&amp;rft.atitle=Theimpactofcaffeineonmood%2Ccognitivefunction%2Cperformanceandhydration%3Aareviewofbenefitsandrisks&amp;rft.date=2008&amp;rft.volume=33&amp;rft.issue=1&amp;rft.spage=15&amp;rft.epage=25&amp;rft.artnum=http%3A%2F%2Fwww.blackwell-synergy.com%2Fdoi%2Fabs%2F10.1111%2Fj.1467-3010.2007.00665.x&amp;rft.au=C.H.S.Ruxton&amp;bpr3.included=1&amp;bpr3.tags=Biology%2CPsychology%2CCognitivePsychology%2CNeuroscience">

 

C. H. S. Ruxton (2008). The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks Nutrition Bulletin, 33 (1), 15-25 DOI: 10.1111/j.1467-3010.2007.00665.x

<span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=InternationalJournalofSportsMedicine&amp;rft.id=info:DOI/10.1055%2Fs-2007-989231&amp;rft.atitle=CaffeineConsumptionAmongstBritishAthletesFollowingChangestothe2004WADAProhibitedList&amp;rft.date=2008&amp;rft.volume=29&amp;rft.issue=6&amp;rft.spage=524&amp;rft.epage=528&amp;rft.artnum=http%3A%2F%2Fwww.thieme-connect.de%2FDOI%2FDOI%3F10.1055%2Fs-2007-989231&amp;rft.au=N.Chester&amp;rft.au=N.Wojek&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CNeuroscience">N. Chester, N. Wojek (2008). Caffeine Consumption Amongst British Athletes Following Changes to the 2004 WADA Prohibited List International Journal of Sports Medicine, 29 (6), 524-528 DOI: 10.1055/s-2007-989231

<span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=JournalofAppliedPhysiology&amp;rft.id=info:DOI/10.1152%2Fjapplphysiol.01121.2007&amp;rft.atitle=Highratesofmuscleglycogenresynthesisafterexhaustiveexercisewhencarbohydrateiscoingestedwithcaffeine&amp;rft.date=2008&amp;rft.volume=105&amp;rft.issue=1&amp;rft.spage=7&amp;rft.epage=13&amp;rft.artnum=http%3A%2F%2Fjap.physiology.org%2Fcgi%2Fdoi%2F10.1152%2Fjapplphysiol.01121.2007&amp;rft.au=D.J.Pedersen&amp;rft.au=S.J.Lessard&amp;rft.au=V.G.Coffey&amp;rft.au=E.G.Churchley&amp;rft.au=A.M.Wootton&amp;rft.au=T.Ng&amp;rft.au=M.J.Watt&amp;rft.au=J.A.Hawley&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CHealth%2CKinesiology">D. J. Pedersen, S. J. Lessard, V. G. Coffey, E. G. Churchley, A. M. Wootton, T. Ng, M. J. Watt, J. A. Hawley (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine Journal of Applied Physiology, 105 (1), 7-13 DOI: 10.1152/japplphysiol.01121.2007 </span>

</span>

798 Views 0 Comments Permalink Tags: caffeine, doping, sport_science, wada, science_in_sports, sports_supplement, anti_doping

!http://drp2010.googlepages.com/hockeyscanner.jpg|height=147|width=200|src=http://drp2010.googlepages.com/hockeyscanner.jpg|border=0!When was the last time you listened to a sporting event on the radio?  If given a choice between watching the game on a big screen plasma in HD or turning on the AM radio, most of us would probably choose the visual sensation of television.  But, for a moment, think about the active attention you need in order to listen to a radio broadcast and interpret the play-by-play announcer's descriptions.  As you hear the words, your "mind's eye" paints the picture of the action so you can imagine the scene and situations.  Your knowledge of the game, either from playing it or watching it for years helps you understand the narrative, the terms and the game's "lingo".


Now, imagine that you are listening to a broadcast about a sport you know nothing about.  Hearing Bob Uecker or Vin Scully say, "With two out in the ninth, the bases are loaded and the Brewers' RBI leader has two strikes.  The infield is in as the pitcher delivers.  Its a hard grounder to third that he takes on the short hop and fires a bullet to first for the final out."  If you have no baseball-specific knowledge, those sentences are meaningless.  However, for those of us that have grown up with baseball, that description makes perfect sense and our mind's eye helped us picture the scene.  That last sentence about the "hard grounder" and the thrown "bullet" may have even triggered some unconscious physical movements by you as your brain interpreted those action phrases.  That sensorimotor reaction is at the base of what is called "[embodied cognition | http://www.iep.utm.edu/e/embodcog.htm]".  Sian Beilock , associate professor of psychology and leader of the Human Performance Lab at the University of Chicago , defined the term this way:  "In contrast to traditional views of the mind as an abstract information processor, recent work suggests that our representations of objects and events are grounded in action. That is, our knowledge is embodied, in the sense that it consists of sensorimotor information about potential interactions that objects or events may allow."  She cites a more complete definition of the concept in Six Views of Embodied Cognition by Margaret Wilson .  Another terrific overview of the concept is provided by science writer Drake Bennet of the Boston Globe in his article earlier this year, "[Don't Just Stand There, Think | http://www.boston.com/bostonglobe/ideas/articles/2008/01/13/dont_just_stand_there_think/?page=1]".


In a study released yesterday, "Sports Experience Changes the Neural Processing of Action Language", Dr. Beilock's team continued their research into the link between our learned motor skills and our language comprehension about those motor skills.  Since embodied cognition connects the body with our cognition, the sports domain provides a logical domain to study it.


Their initial look at this concept was in a 2006 study titled, "Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text", where the team designed an experiment to compare the knowledge representation skill of experienced hockey players and novices.  Each group first read sentences describing both hockey-related action and common, "every-day" action, (i.e. "the referee saw the hockey helmet on the bench" vs. "the child saw the balloon in the air").  They were then shown pictures of the object mentioned in the sentences and were asked if the picture matched the action in the sentence they read.  Both groups, the athletes and the novices, responded equally in terms of accuracy and response time to the everyday sentences and pictures, but the athletes responded significantly faster to the hockey-specific sentences and pictures.  The conclusion is that those with the sensorimotor experience of sport give them an advantage of processing time over those that have not had that same experience.


Now, you may be saying, "Ya' think!?" to this somewhat obvious statement that people who have played hockey will respond faster to sentence/picture relationships about hockey than non-hockey players. Stay with us here for a minute, as the 2006 study set the groundwork for Beilock's team to take the next step with the question, "is there any evidence that the athletes are using different parts of their brain when processing these match or no match decisions?"  The link between our physical skill memory and our language comprehension would be at the base of the embodied cognition theory.  So, in the latest research, the HPL team kept the same basic experimental design, but now wanted to watch the participants' brain activity using fMRI scanning .  This time, there were three groups, hockey players, avid fans of hockey and novices who had no playing or viewing experience with hockey at all.  First, all groups passively listened to sentences about hockey actions and also sentences about everyday actions while being monitored by fMRI.   Second, outside of the fMRI scanner, they again listened to hockey-related and everyday-related action sentences and then were shown pictures of hockey or every day action and asked if there was a match or mis-match between the sentence and the picture.


This comprehension test showed similar results as in 2006, but now the team could try to match the relative skill in comprehension to the neural activity shown in the fMRI scans when listening.  Both the players and the fans showed increased activity in the left dorsal premotor cortex, a region thought to support the selection of well-learned action plans and procedures.  You might be surprised that the fans' brains showed activity in the same regions as the athletes.  We saw this effect in a previous post, "Does Practice Make Perfect", where those that practiced a new dance routine and those that only watched it showed similar brain area activity.  On the other side, the total novices showed activity in the bilateral primary sensory-motor cortex, an area typically known for carrying out step by step instructions for new or novel tasks.  So, the interesting finding here is that those with experience, either playing or watching, are actually calling on additional neural networks in their brains to help their normal language comprehension abilities.  In other words, the memories of learned actions are linked and assist other cognitive tasks.  That sounds pretty much like the definition of embodied cognition and Dr. Beilock's research has helped that theory take another step forward.  In her words, "Experience playing and watching sports has enduring effects on language understanding by changing the neural networks that support comprehension to incorporate areas active in performing sports skills."


So, take pride in your own brain the next time you hear, "Kobe dribbles the ball to the top of the key, crosses over, drives the lane, and finger rolls over Duncan for two." If you can picture that play in your mind, your left dorsal premotor cortex just kicked into gear!


!http://www.researchblogging.org/public/citation_icons/rb2_large_gray.png|style=border: 0pt none;|alt=ResearchBlogging.org|src=http://www.researchblogging.org/public/citation_icons/rb2_large_gray.png!

<span style="font-size: small;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=ProceedingsoftheNationalAcademyofSciences&amp;rft.id=info:DOI/10.1073%2Fpnas.0803424105&amp;rft.atitle=Sportsexperiencechangestheneuralprocessingofactionlanguage&amp;rft.date=2008&amp;rft.volume=&amp;rft.issue=&amp;rft.spage=&amp;rft.epage=&amp;rft.artnum=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Fdoi%2F10.1073%2Fpnas.0803424105&amp;rft.au=S.L.Beilock&amp;rft.au=I.M.Lyons&amp;rft.au=A.Mattarella-Micke&amp;rft.au=H.C.Nusbaum&amp;rft.au=S.L.Small&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CNeuroscience%2CCognitiveNeuroscience%2CCognitivePsychology%2C+Learning">

 

 

 

S. L. Beilock, I. M. Lyons, A. Mattarella-Micke, H. C. Nusbaum, S. L. Small (2008). Sports experience changes the neural processing of action language Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0803424105

<span style="font-size: small;" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=PsychonomicBulletin%26Review&amp;rft.id=info:DOI/17201372&amp;rft.atitle=Expertiseanditsembodiment%3AExaminingthe%0D%0Aimpactofsensorimotorskillexpertiseonthe%0D%0Arepresentationofaction-relatedtext&amp;rft.date=2006&amp;rft.volume=13&amp;rft.issue=4&amp;rft.spage=694&amp;rft.epage=701&amp;rft.artnum=http%3A%2F%2Fhpl.uchicago.edu%2FPublications%2Fpapers_reprints%2FHolt_Beilock_PBR2006.pdf&amp;rft.au=LaurenE.Holt&amp;rft.au=SianL.Beilock&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CLearning%2CCognitive+Psychology">Lauren E. Holt, Sian L. Beilock (2006). Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text Psychonomic Bulletin & Review, 13 (4), 694-701 PMID: 17201372

549 Views 0 Comments Permalink Tags: sport_science, evidence_based_coaching, sports_cognition, sport_skills, youth_sports, sian_beilock, cognitive_science, science_in_sports

Inside An Olympian's Brain

Posted by Dan Peterson Aug 25, 2008

!http://4.bp.blogspot.com/_3b3RMRFwqU0/SKYZpzLgQCI/AAAAAAAAAZc/rtpQWpa3TXk/s320-R/phelps.jpg|src=http://4.bp.blogspot.com/_3b3RMRFwqU0/SKYZpzLgQCI/AAAAAAAAAZc/rtpQWpa3TXk/s320-R/phelps.jpg|border=0!!http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYZv_ldbmI/AAAAAAAAAZs/ADQSC1YRVjU/s320-R/may.jpg|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYZv_ldbmI/AAAAAAAAAZs/ADQSC1YRVjU/s320-R/may.jpg|border=0!!http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYan3gpoAI/AAAAAAAAAZ8/azuH_ryf_mQ/s320-R/Liukin.jpg|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYan3gpoAI/AAAAAAAAAZ8/azuH_ryf_mQ/s320-R/Liukin.jpg|border=0!!http://2.bp.blogspot.com/_3b3RMRFwqU0/SKYZzBUF6yI/AAAAAAAAAZ0/cqTNjX3gV88/s320-R/lindan.jpg|src=http://2.bp.blogspot.com/_3b3RMRFwqU0/SKYZzBUF6yI/AAAAAAAAAZ0/cqTNjX3gV88/s320-R/lindan.jpg|border=0!
Michael Phelps, Nastia Liukin, Misty May-Treanor and Lin Dan are four Olympic athletes who have each spent most of their life learning the skills needed to reach the top of their respective sports, swimming, gymnastics, beach volleyball and badminton (you were wondering about Lin, weren't you...) Their physical skills are obvious and amazing to watch. For just a few minutes, instead of being a spectator, try to step inside the heads of each of them and try to imagine what their brains must accomplish when they are competing and how different the mental tasks are for each of their sports.


On a continuum from repetitive motion to reactive motion, these four sports each require a different level of brain signal to muscle movement.  Think of Phelps finishing off one more gold medal race in the last 50 meters.  His brain has one goal; repeat the same stroke cycle as quickly and as efficiently as possible until he touches the wall.  There isn't alot of strategy or novel movement based on his opponent's movements.  Its simply to be the first one to finish.  What is he consciously thinking about during a race?  In his post-race interviews, he says he notices the relative positions of other swimmers, his energy level and the overall effort required to win (and in at least one race, the level of water in his goggles.)  At his level, the concept of automaticity (as discussed in a previous post) has certainly been reached, where he doesn't have to consciously "think" about the components of his stroke.  In fact, research has shown that those who do start analyzing their body movements during competition are prone to errors as they take themselves out of their mental flow.


Moving up the continuum, think about gymnastics. Certainly, the skills to perform a balance beam routine are practiced to the point of fluency, but the skills themselves are not as strictly repetitive as swimming. There are finer points of each movement being judged so gymnasts keep several mental "notes" about the current performance so that they can "remember" to keep their head up or their toes pointed or to gather speed on the dismount. There also is an order of skills or routine that needs to be remembered and activated.


While swimming and gymnastics are battles against yourself and previously rehearsed movements, sports like beach volleyball and badminton require reactionary moves directly based on your opponents' movements. Rather than being "locked-in" to a stroke or practised routine, athletes in direct competition with their opponents must either anticipate or react to be successful.


!http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYi4C58yJI/AAAAAAAAAaE/Pv9HH8UEWWE/s200-R/motor-cortex.jpg|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SKYi4C58yJI/AAAAAAAAAaE/Pv9HH8UEWWE/s200-R/motor-cortex.jpg|border=0!So, what is the brain's role in learning each of these varied sets of skills and what commands do our individual neurons control?  Whether we are doing a strictly repetitive movement like a swim stroke or a unique, "on the fly" move like a return of a serve, what instructions are sent from our brain to our muscles?  Do the neurons of the primary motor cortex (where movement is controlled in the brain) send out signals of both what to do and how to do it?

Researchers at the McGovern Institute for Brain Research at MIT led by Robert Ajemian designed an experiment to solve this "muscles or movement" question.  They trained adult monkeys to move a video game joystick so that a cursor on a screen would move towards a target.  While the monkeys learned the task, they measured brain activity with functional magnetic resonance imaging (fMRI) to compare the actual movements of the joystick with the firing patterns of neurons.  The researchers then developed a model that allowed them to test hypotheses about the relationship between neuronal activity that they measured in the monkey's motor cortex and the resulting actions.  They concluded that neurons do send both the specific signals to the muscles to make the movement and a goal-oriented instruction set to monitor the success of the movement towards the goal.  Here is a video synopsis of a very similar experiment by Miguel Nicolelis , Professor of Neurobiology at Duke University:

http://www.youtube.com/v/7-cpcoIJbOU&hl=en&fs=1

To back this up, Andrew Schwartz , professor of neurobiology at the McGowan  Institute for Regenerative Medicine at the University of Pittsburgh School of Medicine, and his team of researchers wanted to isolate the brain signals from the actual muscles and see if the neuron impulses on their own could produce both intent to move and the movement itself.  They taught adult monkeys to feed themselves using a robotic arm while the monkey's own arms were restrained.  Instead, tiny probes the width of a human hair were placed in the monkey's motor cortex to pick up the electrical impulses created by the monkey's neurons.  These signals were then evaluated by software controlling the robotic arm and the resulting movement instructions were carried out.  The monkeys were able to control the arm with their "thoughts" and feed themselves food.  Here is a video sample of the experiment :


"In our research, we've demonstrated a higher level of precision, skill and learning," explained Dr. Schwartz. "The monkey learns by first observing the movement, which activates his brain cells as if he were doing it. It's a lot like sports training, where trainers have athletes first imagine that they are performing the movements they desire."


It seems these "mental maps" of neurons in the motor cortex are the end goal for athletes to achieve the automaticity required to either repeat the same rehearsed motions (like Phelps and Liukin) or to react instantly to a new situation (like May-Treanor and Dan). Luckily, we can just practice our own automaticity of sitting on the couch and watching in a mesemerized state.

 

!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!

 

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=Neuron&amp;rft.id=info:DOI/10.1016%2Fj.neuron.2008.02.033&amp;rft.atitle=AssessingtheFunctionofMotorCortex%3ASingle-NeuronModelsofHowNeuralResponseIsModulatedbyLimbBiomechanics&amp;rft.date=2008&amp;rft.volume=58&amp;rft.issue=3&amp;rft.spage=414&amp;rft.epage=428&amp;rft.artnum=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627308002213&amp;rft.au=RAJEMIAN&amp;rft.au=AGREEN&amp;rft.au=DBULLOCK&amp;rft.au=LSERGIO&amp;rft.au=JKALASKA&amp;rft.au=SGROSSBERG&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2CCognitive+Psychology">R AJEMIAN, A GREEN, D BULLOCK, L SERGIO, J KALASKA, S GROSSBERG (2008). Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb Biomechanics Neuron, 58 (3), 414-428 DOI: 10.1016/j.neuron.2008.02.033 </span>

 

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=Nature&amp;rft.id=info:DOI/10.1038%2Fnature06996&amp;rft.atitle=Corticalcontrolofaprostheticarmforself-feeding&amp;rft.date=2008&amp;rft.volume=453&amp;rft.issue=7198&amp;rft.spage=1098&amp;rft.epage=1101&amp;rft.artnum=http%3A%2F%2Fwww.nature.com%2Fdoifinder%2F10.1038%2Fnature06996&amp;rft.au=MeelVelliste&amp;rft.au=SagiPerel&amp;rft.au=M.ChanceSpalding&amp;rft.au=AndrewS.Whitford&amp;rft.au=AndrewB.Schwartz&amp;bpr3.included=1&amp;bpr3.tags=Psychology%2COther%2CCognitivePsychology%2C+Kinesiology">Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, Andrew B. Schwartz (2008). Cortical control of a prosthetic arm for self-feeding Nature, 453 (7198), 1098-1101 DOI: 10.1038/nature06996 </span>

641 Views 0 Comments Permalink Tags: olympics, coaching, sport_science, sports_cognition, vision_and_perception, sport_psychology

 

!http://1.bp.blogspot.com/_3b3RMRFwqU0/SJ39bdJ06LI/AAAAAAAAAZU/4DN1--2fQ-4/s200-R/GoldMedal.jpg|style=border: 0pt none ;|src=http://1.bp.blogspot.com/_3b3RMRFwqU0/SJ39bdJ06LI/AAAAAAAAAZU/4DN1--2fQ-4/s200-R/GoldMedal.jpg!Imagine winning a gold medal at the Beijing Olympics .  No really, go ahead, close your eyes and visualize it.  What did you see?  Were you standing on the medal platform looking out at the crowd, waving and taking in the scene through your own eyes, or were you a spectator in the crowd watching yourself getting the medal put around your neck?  This choice between "first-person" or "third-person" visualization actually makes a difference on our motivation to achieve a future goal.


Noelia A. Vasquez, at York University and Roger Buehler, at Wilfrid Laurier University wanted to see if there was a link between our visualization perspective and our motivation level to achieve the imagined goal.  They asked 47 university students to imagine the successful completion of a performance task that was in their near future, whether it be a speech in a class or an upcoming athletic competition.  They were also asked to assume that the task went extremely well.  One group of students were asked to imagine this scene "through their own eyes" seeing the environment as they would actually experience it.  The second group was told to use the third-person perspective, pretending they were "in the crowd" watching themselves as others would see them achieving this goal.  Next, they were given a survey that asked each group how motivated they were to now go make this successful scene a reality. 




As hypothesized, the group that saw the scene through their audience's eyes (third-person) ranked their motivation to now succeed significantly higher than those that imagined it through their own eye (first-person).  The authors' explanation for this is the perceived additional importance attached to the task when we consider other peoples' opinion of us and our natural desire to increase our status in our peer group.  Seeing this newly elevated social acceptance and approval of ourselves from the eyes of our peers motivates us even more to reach for our goals.




The road to achievements like an Olympic gold medal is a long one with many steps along the way.  Over the years, as athletes maintain their training regimen, they can keep imagining the future goal, but they may need to also look back and recognize the improvements they have made over time.  This "progress to date" assessment will also provide motivation to keep going once they realize the hard work is actually having the desired effect and moving them along the desired path.  So, as they review their past to present progress, does the first or third person perspective make a difference there as well?




Researchers from Cornell, Yale and Ohio State, led by Thomas Gilovich , professor of psychology at Cornell, designed an experiment to find out.  They recruited a group of university students who had described their high-school years as "socially awkward" to now recall those years and compare them with their social skill in college.  The first group was asked to recall the past from a first-person perspective, just as their memories would provide them.  The second group was asked to remember themselves through the perspective of their classmates (third-person).  Next, each group was asked to assess the personal change they had accomplished since then.




As predicted, the group that had recalled their former selves in the third person reported greater progress and change towards a more social and accepted person in college than the group that remembered in the first-person.  "We have found that perspective can influence your interpretation of past events. In a situation in which change is likely, we find that observing yourself as a third person -- looking at yourself from an outside observer's perspective -- can help accentuate the changes you've made more than using a first-person perspective," says Gilovich.  "When participants recalled past awkwardness from a third-person perspective, they felt they had changed and were now more socially skilled," said Lisa K. Libby, an assistant professor of psychology at Ohio State University. "That led them to behave more sociably and appear more socially skilled to the research assistant."




So, whether looking forward or backward, seeing yourself through other's eyes seems to provide more motivation to not only continue the road to success, but to appreciate the progress you have made. 




Then the actual day of competition arrives.  It is one hour before you take your position on the starting blocks at the "Bird's Nest" stadium in Beijing or on the mat at the National Indoor Stadium for the gymnastics final.  Should you be imagining the medal ceremony and listening to your country's national anthem at that point?  In a recent Denver Post article , Peter Haberl, senior sports psychologist for the U.S. Olympic Committee says, "It takes a great deal of ability and skill to stay focused on the task at hand."  He distinguishes between an "outcome" goal, (receiving the medal) and "performance" (improving scores/times) and "process" (improving technique) goals.  "The difference is that these types of goals are much more under the control of the athlete," explains Haberl. "The process goal, in particular, directs attention to the here and now, which allows the athlete to totally focus on the doing of the activity; this is key to performing well.  This sounds simple but it really is quite difficult because the mind takes you to the past and the future all the time, particularly in the Olympic environment with its plethora of distractions and enticing rewards." 




Mental imagery is a well-known tool for every athlete to make distant and difficult goals seem attainable.  By seeing your future accomplishments through the eyes of others, you can attach more importance and reward to achieving them.  Just imagine yourself in London in 2012 !



<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!
<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Vasquez&amp;rft.aufirst=Noelia&amp;rft.aumiddle=A&amp;rft.au=Noelia+ Vasquez&amp;rft.title=PersonalityandSocialPsychologyBulletin&amp;rft.atitle=SeeingFutureSuccess%3ADoesImageryPerspectiveInfluenceAchievementMotivation%3F&amp;rft.date=2007&amp;rft.volume=33&amp;rft.issue=10&amp;rft.spage=1392&amp;rft.epage=1405&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fpsp.sagepub.com%2Fcgi%2Fcontent%2Fabstract%2F33%2F10%2F1392&amp;rft.id=info:PMID/17933735">Vasquez, N.A. (2007). Seeing Future Success: Does Imagery Perspective Influence Achievement Motivation?. Personality and Social Psychology Bulletin, 33(10), 1392-1405.




<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Libby&amp;rft.aufirst=Lisa&amp;rft.aumiddle=K&amp;rft.au=Lisa+ Libby&amp;rft.au=RichardPEibach&amp;rft.au=Thomas+Gilovich&amp;rft.title=JournalofPersonalityandSocialPsychology&amp;rft.atitle=Here%27sLookingatMe%3ATheEffectofMemoryPerspectiveonAssessmentsofPersonal+Change.&amp;rft.date=2005&amp;rft.volume=88&amp;rft.issue=1&amp;rft.spage=50&amp;rft.epage=62&amp;rft.genre=article&amp;rft.id=info:DOI/10.1037%2F0022-3514.88.1.50">Libby, L.K., Eibach, R.P., Gilovich, T. (2005). Here's Looking at Me: The Effect of Memory Perspective on Assessments of Personal Change.. Journal of Personality and Social Psychology, 88(1), 50-62. DOI: 10.1037/0022-3514.88.1.50</font>

594 Views 0 Comments Permalink Tags: training, olympics, coaching, evidence_based_coaching, sports_cognition, sports_science, sport_skills, mental_imagery

!http://bp2.blogger.com/_3b3RMRFwqU0/SJPuI716v-I/AAAAAAAAAYs/G_VFex594Dk/s320-R/hockeyconcussion.jpg|style=border: 0pt none ;|src=http://bp2.blogger.com/_3b3RMRFwqU0/SJPuI716v-I/AAAAAAAAAYs/G_VFex594Dk/s320-R/hockeyconcussion.jpg!As the puck was cleared to the other end of the ice, my 9-year old son's hockey teammates raced after it.  Then, I saw him.  He was lying motionless and face down at the blue line.  He had slid headfirst into the boards to make a play. By the time our coach made it over to him, he had started to move.  After a few minutes, they both skated to the bench where I saw the two talking.  Coach looked up at me in the stands with a grim look and motioned for me to come down.  The next four hours were my introduction to sports concussions.




!http://bp1.blogger.com/_3b3RMRFwqU0/SJPuvHHw3uI/AAAAAAAAAY8/9sLtbEgDty0/s320-R/SportsInjuriesKidsStats.gif|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SJPuvHHw3uI/AAAAAAAAAY8/9sLtbEgDty0/s320-R/SportsInjuriesKidsStats.gif!A concussion, clinically known as a Mild Traumatic Brain Injury (MTBI), is one of the most common yet least understood sports injuries.  According to the Centers for Disease Control, there are as many as 300,000 sports and recreation-related concussions each year in the U.S., yet the diagnosis, immediate treatment and long-term effects are still a mystery to most coaches, parents and even some clinicians.  The injury can be deceiving as there is rarely any obvious signs of trauma.  If the head is not bleeding and the player either does not lose consciouness or regains it after a brief lapse, the potential damage is hidden and the usual "tough guy" mentality is to "shake it off" and get back in the game.




[Leigh Steinberg | http://en.wikipedia.org/wiki/Leigh_Steinberg], agent and representative to some of the top professional athletes in the world (including NFL QBs Ben Roethlisberger and Matt Leinart), is tired of this ignorance and attitude.  "My clients, from the day they played Pop Warner football, are taught to believe ignoring pain, playing with pain and being part of the playing unit was the most important value," Steinberg said, "I was terrified at the understanding of how tender and narrow that bond was between cognition and consciousness and dementia and confusion".  Which is why he was the keynote speaker at last week's "New Developments in Sports-Related Concussions" conference hosted by the University of Pittsburgh Medical College Sport Medicine Department in Pittsburgh.  Leading researchers gathered to discuss the latest research on sports-related concussions, their diagnosis and treatment.  "There's been huge advancement in this area," said Dr. Micky Collins, the assistant director for the UPMC Sports Medicine Program. "We've learned more in the past five years than the previous 50 combined."




 

!http://bp1.blogger.com/_3b3RMRFwqU0/SJPvB6f16FI/AAAAAAAAAZE/lNTbf_nb268/s320-R/concussion.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SJPvB6f16FI/AAAAAAAAAZE/lNTbf_nb268/s320-R/concussion.jpg!

So, what is a concussion?  The CDC defines a concussion as "a complex pathophysiologic process affecting the brain, induced by traumatic biomechanical forces secondary to direct or indirect forces to the head."  Being a "mild" form of traumatic brain injury, it is generally believed that there is no actual structural damage to the brain from a concussion, but more a disruption in the biochemistry and electrical processes between neurons.  The brain is surrounded by cerebrospinal fluid, which is supposed to provide some protection from minor blows to the head.  However, a harder hit can cause rotational forces that affect a wide area of the brain, but most importantly the mid-brain and the reticular activating system which may explain the loss of consciousness in some cases.




In my son's case, he regained consciousness on the ice, but was in a very confused and dazed state for several hours.  He could not tell us his name, his teammates names, or even his brothers' names.  His expression was blank and he kept asking the same questions, "why are we here?" and "what happened"?   The local hospital performed a CT scan to look for any bleeding or skull fracture.  Seeing none, the diagnosis was an MTBI and that he would recover over time.  After four hours, his memory and personality did slowly return.  For some athletes, the concussion symptoms take longer to disappear in what is known as post-concussion syndrome.  It is not known whether this is from some hidden structural damage or more permanent disruption to neuronal activity.  Repeated concussions over time can lead to a condition known as dementia pugilistica , with long-term impairments to speech, memory and mental processing.




After the initial concussion, returning to the field before symptoms clear raises the risk of second impact syndrome, which can cause more serious, long-term effects.  As part of their "Heads Up" concussion awareness campaign, the CDC offers this video story of Brandon Schultz , a high school football player, who was not properly diagnosed after an initial concussion and suffered a second hit the following week, which permanently changed his life.  Without some clinical help, the player, parents and coach can only rely on the lack of obvious symptoms before declaring a concussion "healed".  However, making this "return to play" decision is now getting some help from some new post-concussion tests.  The first is a neurological skills test called ImPACT (Immediate Post-Concussion and Cognitive Testing) created by the same researchers at UPMC.  It is an online test given to athletes after a concussion to measure their performance in attention span, working memory, sustained and selective attention time, response variability, problem solving and reaction time.  Comparing a "concussed" athlete's performance on the test with a baseline measurement will help the physician decide if the brain has healed sufficiently.




However, Dr. Collins and his team wanted to add physiological data to the psychological testing to see if there was a match between brain activity, skill testing and reported symptoms after a concussion.  In a study released last year in the journal Neurosugery, they performed functional MRI (fMRI) brain imaging studies on 28 concussed high-school athletes while they performed certain working memory tasks to see if there was a significant link between performance on the tests and changes in brain activation.  They were tested about one week after injury and again after the normal clinical recovery period.“In our study, using fMRI, we demonstrate that the functioning of a network of brain regions is significantly associated with both the severity of concussion symptoms and time to recover,” said Jamie Pardini, Ph.D., a neuropsychologist on the clinical and research staff of the UPMC concussion program and co-author of the study.  “We identified networks of brain regions where changes in functional activation were associated with performance on computerized neurocognitive testing and certain post-concussion symptoms,” Dr. Pardini added. "Also, our study confirms previous research suggesting that there are neurophysiological abnormalities that can be measured even after a seemingly mild concussion.” 




Putting better assessment tools in the hands of athletic trainers and coaches will provide evidence-based coaching decisions that are best for the athlete's health.  Better decisions will also ease the minds of parents knowing their child has fully recovered from their "invisible" injury.

!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!


<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Lovell&amp;rft.aufirst=Mark&amp;rft.aumiddle=R&amp;rft.au=Mark+ Lovell&amp;rft.au=JamieEPardini&amp;rft.au=Joel+Welling&amp;rft.au=MichaelWCollins&amp;rft.au=JenniferBakal&amp;rft.au=NicoleLazar&amp;rft.au=RebeccaRoush&amp;rft.au=WilliamFEddy&amp;rft.au=JamesTBecker&amp;rft.title=Neurosurgery&amp;rft.atitle=FUNCTIONALBRAINABNORMALITIESARERELATEDTOCLINICALRECOVERYANDTIMETORETURN-TO-PLAYINATHLETES&amp;rft.date=2007&amp;rft.volume=61&amp;rft.issue=2&amp;rft.spage=352&amp;rft.epage=360&amp;rft.genre=article&amp;rft.id=info:DOI/10.1227%2F01.NEU.0000279985.94168.7F">Lovell, M.R., Pardini, J.E., Welling, J., Collins, M.W., Bakal, J., Lazar, N., Roush, R., Eddy, W.F., Becker, J.T. (2007). FUNCTIONAL BRAIN ABNORMALITIES ARE RELATED TO CLINICAL RECOVERY AND TIME TO RETURN-TO-PLAY IN ATHLETES. Neurosurgery, 61(2), 352-360. DOI: 10.1227/01.NEU.0000279985.94168.7F </font>

725 Views 0 Comments Permalink Tags: football, soccer, concussion, sport_science, evidence_based_coaching, youth_sports, mtbi, head_injury

HGH - Human Growth Hoax?

Posted by Dan Peterson Jul 27, 2008

 

!http://bp1.blogger.com/_3b3RMRFwqU0/SIq6fhQ7cDI/AAAAAAAAAYk/BtwTSmcoiQo/s320-R/atlas2.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SIq6fhQ7cDI/AAAAAAAAAYk/BtwTSmcoiQo/s320-R/atlas2.jpg!

Athletes, both professional and amateur, as well as the general public are convinced that human growth hormone (HGH) , Erythropoietin (EPO) and anabolic-androgenic steroids (AAS) are all artificial and controversial paths to improved performance in sports.  The recent headlines that have included Barry Bonds, Marion Jones, Floyd Landis, Dwayne Chambers, Jose Canseco, Jason Giambi, Roger Clemens and many lesser known names (see the amazingly long list of doping cases in sport ) have referred to these three substances interchangeably leaving the public confused about who took what from whom.  With so many athletes willing to gamble with their futures, they must be confident that they will see significant short-term results.  So, is it worth the risk?  Two very interesting recent studies provide some answers on at least one of the substances, HGH. 




A team at the Stanford University School of Medicine, led by Hau Liu MD , recently reviewed 27 historical studies on the effects of HGH on athletic performance, dating back to 1966 (see reference below).  They wanted to see if there were any definitive links between HGH use and improved results.  In some of the studies, test volunteers who received HGH did develop more lean body mass, but also developed more lactate during aerobic testing which inhibited rather than helped performance.  While their muscle mass increased, other markers of athletic fitness, such as VO2max remained unchanged.  “The key takeaway is that we don’t have any good scientific evidence that growth hormone improves athletic performance,” said senior author Andrew Hoffman, MD , professor of endocrinology, gerontology and metabolism.




Both Liu and Hoffman cautioned that the amounts of HGH given to these test subjects may be much lower than the the purported levels claimed to be taken by professional athletes.  They also pointed out that at a professional level, a very slight improvement might be all that is necessary to get an edge of your opponent.  Hoffman also added an insightful comment, “So much of athletic performance at the professional level is psychological.”  If an athlete takes HGH, sees some muscle mass growth and isn't 100% sure of its performance capabilities, might he assume he now has other "Superman" powers?




That is exactly the premise that a research team from Garvan Institute of Medical Research in Sydney, Australia used to find out if HGH users simply relied on a placebo effect.  Sixty-four participants, young adult recreational athletes, were divided into two groups of 32 and tested for a baseline of athletic ability in endurance, strength, power and sprinting.  One group received growth hormone and the other group received a simple placebo.  It was a "double-blind" study in that neither the participants nor the researchers knew during the testing which substance each group received.




At the end of the 8 week treatment, the athletes were asked if they thought they were in the HGH group or the placebo group.  Half of the group that had received the placebo incorrectly guessed that they were on HGH.  Not too surprisingly, the majority of the "incorrect guessers" were men.  Here's where it gets interesting.  The incorrect guessers also thought that their athletic abilities had improved over the 8 week period.  The team retested all of the placebo group and actually did find improvement across all of the tests, but only significantly in the high-jump test.
Jennifer Hansen, a nurse researcher and Dr. Ken Ho, head of the pituitary research unit at Garvan have not released the data on the group that did receive the HGH, but they will in their final report coming soon.




So, let's recap.  On the one hand, we have a research review that claims there is not yet any scientific evidence that HGH actually improves sports performance.  Yet, we have hundreds, if not thousands, of athletes illegally using HGH for performance gain.  Showing the effect of the "if its good enough for them, its good enough for me" beliefs of the public regarding professional athlete use of HGH, we now have research that shows even those who received a placebo, but believed they were taking HGH not only thought they were improving but actually did improve a little.  Once again, we see the power of our own natural, non-supplemented brain to convince (or fool) ourselves to perform at higher levels than we thought possible.




<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!


<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Liu&amp;rft.aufirst=H&amp;rft.au=H+ Liu&amp;rft.au=DBravata&amp;rft.au=IOlkin&amp;rft.au=AFriedlander&amp;rft.au=VLiu&amp;rft.au=BRoberts&amp;rft.au=EBendavid&amp;rft.au=OSaynina&amp;rft.au=SSalpeter&amp;rft.au=AGarber&amp;rft.title=AnnalsofInternalMedicine&amp;rft.atitle=Systematicreview%3Atheeffectsofgrowthhormoneonathletic+performance.&amp;rft.date=2008&amp;rft.volume=148&amp;rft.issue=10&amp;rft.spage=747&amp;rft.epage=758&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fwww.annals.org%2Fcgi%2Fcontent%2Fshort%2F148%2F10%2F747&amp;rft.id=info:PMID/18347346">Liu, H., Bravata, D.M., Olkin, I., Friedlander, A., Liu, V., Roberts, B., Bendavid, E., Saynina, O., Salpeter, S.R., Garber, A.M. (2008). Systematic review: the effects of growth hormone on athletic performance.. Annals of Internal Medicine, 148(10), 747-758.

665 Views 0 Comments Permalink Tags: sport, sport, sport, sports, olympics, baseball, floyd, landis, in, skills, human, doping, psychology, growth, hormone, science, barry, bonds, marion, jones, jason, giambi

Visit any youth soccer field, baseball diamond, basketball court or football field and you will likely see them:  parents behaving badly.  Take a look at this Good Morning America report:

These are the extremes, but at most games, you can find at least one adult making comments at the referee, shouting at their child, or having a verbal exchange with another parent.  Thankfully, these parents represent only a small percentage of those attending the game.  Does that mean the others don't become upset at something during the game?  Usually not, as there are lots of opportunities to dispute a bad call or observe rough play or react to one of these loud parents.  The difference is in our basic personality psyche, according to Jay Goldstein, a kinesiology doctoral student at the University of Maryland School of Public Health .  His thesis, recently published in the Journal of Applied Social Psychology (see reference below), hypothesized that a parent with "control-oriented" personality would react to events at a game more than a parent with an "autonomy-oriented" personality.

 


According to Goldstein, defending our ego is what usually gets us in trouble when we feel insulted or take something personally.  At youth sports games, we transfer this pride to our kids, so if someone threatens their success on the field, we often take it personally.  The control-oriented parent is more likely to react with a verbal or sometimes physical response, while an autonomy-oriented parent is better able to internalize and maintain their emotions.  This "control" vs. "autonomy" comparison has also been seen in research on "road rage", when drivers react violently to another driver's actions.
Goldstein and his team focused their research on suburban Washington soccer parents back in 2004.  They designed a survey for parents to fill out prior to watching a youth soccer game that would help categorize them as control or autonomy-oriented.  Immediately after the game ended, another survey was given to the parents that asked about any incidents during the game that made them angry on a scale of 1, slightly angry, to 7, furious.  They were also asked what action they took when they were angry.  Choices included "did nothing" to more aggressive acts like walking towards the field and/or yelling or confronting either the referee, their own child, or another player/parent.  53% of the 340 parents surveyed reported getting angry at something during the game, while about 40% reported doing something about their anger.
There was a direct and significant correlation between control-oriented parents, as identified in the pre-game survey, and the level of angry actions they took during the game.  Autonomy-oriented parents still got mad, but reported less aggressive reactions.  As Goldstein notes, “Regardless of their personality type, all parents were susceptible to becoming more aggressive as a result of viewing actions on the field as affronts to them or their kids.  However, that being said, it took autonomy-oriented parents longer to get there as compared to the control-oriented parents.”
So, now that we know the rather obvious conclusion that parents who yell at other motorists are also likely to yell at referees, what can we do about it?  Goldstein sees this study as a first step.  He hopes to study a wider cross-section of sports and socio-economic populations.  Many youth sports organizations require parents to sign a pre-season "reminder" code of conduct, but those are often forgotten in the heat of the battle on the field.  Maybe by offering the same type of personality survey prior to the season, the "control-oriented" parents can be offered resources to help them manage their tempers and reactions during a game.  Since referees were the number one source of frustration reported by parents, two solutions are being explored by many organizations; more thorough referee training and quality control while also better training of parents on the rules of the game which often cause the confusion.
Sports contests will always be emotional, from kids' games all the way up to professionals.  Keeping the games in perspective and our reactions positive are tough things to do but when it comes to our kids, it is required.


!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!


Goldstein, J.D., Iso-Ahola, S.E. (2008). Determinants of Parents' Sideline-Rage Emotions and Behaviors at Youth Soccer Games. Journal of Applied Social Psychology, 38(6), 1442-1462. DOI: 10.1111/j.1559-1816.2008.00355.x</span>

751 Views 0 Comments Permalink Tags: basketball, coaching, soccer, baseball, relevant_research, sport_psychology, soccer_moms, sideline_rage

!http://bp1.blogger.com/_3b3RMRFwqU0/SHow_OmdEqI/AAAAAAAAAXU/0QZneKnbrAQ/s320-R/beane.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SHow_OmdEqI/AAAAAAAAAXU/0QZneKnbrAQ/s320-R/beane.jpg!Most baseball general managers live in obscurity most of their careers.  Its their first hire, the manager, that usually gets the red hot spotlight, after every win and loss, second-guessed by reporters with recorders and then later by fans.  The GM puts the players on the field and lets the manager and his coaches take it from there.  Billy Beane , Oakland A's general manager, could have also been an unknown, albeit interesting, name to the baseball audience if it were not for author Michael Lewis' 2003 book, Moneyball  .  Moneyball was a runaway hit (even today, 5 years later, it is #19 on Amazon's list of baseball books).  It has morphed into a full-fledged catchphrase philosophy used by everyone from Wall Street (where Beane borrowed the concept) to business consulting.  The general theme is to find undervalued assets (ballplayers) by focusing on statistics that your competition is ignoring.  Of course, you have to believe in your metrics and their predictive value for success (why has everyone else ignored these stats?)  The source of most of Beane's buried treasure of stats was Bill James and his Sabrmetrics.  Like picking undervalued stocks of soon to explode companies, Beane looked for the diamond in the dust (pun intended) and sign the player while no one was looking.  Constrained by his "small-market" team revenues, or maybe by his owners' crowbar-proof wallets, he needed to make the most from every dollar.

The combination of a GM's shrewd player selection and a manager who can develop that talent should reward the owner with the best of both worlds: an inexpensive team that wins.  This salary vs. performance metric is captured perfectly in this "real-time" graphic at BenFry.com .  It connects the updated win-loss record for each MLB team with its payroll to show the "bang for the buck" that the GMs/managers are getting from their players.  Compare the steep negative relationship for the Mets, Yankees, Tigers and Mariners with the amazing results of the Rays, Twins and Beane's own A's.  While the critics of Moneyball tactics would rightly point to the A's lack of a World Series win or even appearance, the "wins to wages" ratio has not only kept Beane in a job but given him part ownership in the A's and now the newly resurrected San Jose Earthquakes of soccer's MLS.  Beane believes the same search for meaningful and undiscovered metrics in soccer can give the Quakes the same arbitrage advantage.  In fact, there are rumours that he will focus full-time on conquering soccer as he knows there are much bigger opportunities worldwide if he can prove his methods within MLS.

In baseball, Beane relied on the uber-stat guru, Bill James, for creative and more relevant statistical slices of the game.  In soccer, he is working with some top clubs including his new favorite, Tottenham-Hotspur, of the English Premier League.  While he respects the history and tradition of the game, he is confident that his search for a competitive advantage will uncover hidden talents.  Analytical tools from companies such as Opta   in Europe and Match Analysis in the U.S. have combined video with detailed stat breakdowns of every touch of the ball for every player in each game.  Finding the right pattern and determinant of success has become the key, according to Match Analysis president Mark Brunkhart as quoted earlier this year ,
"You don't need statistics to spot the real great players or the really bad ones. The trick is to take the players between those two extremes and identify which are the best ones.  If all you do is buy the players that everyone else wants to buy then you will end up paying top dollar. But if you take Beane's approach - to use a disciplined statistical process to influence the selection of players who will bring the most value - then you are giving yourself the best chance of success. Who would not want to do that?"

Not to feel left out (or safe from scrutiny), the NBA now has its own sport-specific zealots.  The [Association for Professional Basketball Research (APBR) | http://apbr.org/] devotes its members time and research to finding the same type of meaningful stats that have been ignored by players, coaches and fans.  They, too, have their own Moneyball-bible, "The Wages of Wins " by David Berri, Martin Schmidt, and Stacey Brook.  David Berri's [WoW journal/blog | http://dberri.wordpress.com/] regularly posts updates and stories related to the current NBA season and some very intriguing analysis of its players and the value of their contributions.  None other than Malcolm Gladwell, of Tipping Point and Blink fame, provided the [review of Wages of Wins for the New Yorker | http://www.newyorker.com/archive/2006/05/29/060529crbo_books1].  One of the main stats used is something called a player's "Win Score" which attempts to measure the complete player, not just points, rebounds and assists.

 

Win Score (WS) = PTS + REB + STL + ½BLK + ½AST – FGA – ½FTA – TO – ½PF.   (Points, Rebounds, Steals, Blocked Shots, Assists, Field Goal Attempts, Free Throw Attempts, Turnovers, Personal Fouls)

 

WS is then adjusted for minutes played with the stat, WS48.  Of course, different player positions will have different responsibilities, so to compare players of different positions the Position Adjusted Win Score per 48 minutes or PAWS48 is calculated as: WS48 – Average WS48 at primary position played.  This allows an apples to apples comparison between players at a position, and a reasonable comparison of players' values across positions.  Berri's latest article looks at the fascination with Michael Beasley and some early comparisons in the Orlando Summer League. 

Will these statistics-based approaches to player evaluation be accepted by the "establishment"?  Judging by the growing number of young, MBA-educated GMs in sports, there is a movement towards more efficient and objective selection criteria.  Just as we saw in previous evidence-based coaching articles , the evidence-based general manager is here to stay.


 

589 Views 0 Comments Permalink Tags: nba, basketball, soccer, baseball, moneyball, sport_science, evidence_based_coaching, decision_theory_in_sports, billy_beane, bill_james, wages_of_wins

!http://bp1.blogger.com/_3b3RMRFwqU0/SHPW2TXf7bI/AAAAAAAAAXM/Ai7wkX-Ok1s/s320-R/golf.jpg|style=border: 0pt none ;|src=http://bp1.blogger.com/_3b3RMRFwqU0/SHPW2TXf7bI/AAAAAAAAAXM/Ai7wkX-Ok1s/s320-R/golf.jpg!Here are some quotes we have all heard (or said ourselves) on the golf course or at the ball diamond.

On a good day:

"It was like putting into the Grand Canyon"

"The baseball looked like a beach ball up there today"

On a bad day:

"The hole was as small as a thimble"

"I don't know, it looked like he was throwing marbles"

 

The baseball and the golf hole are the same size every day, so are these comments meaningless or do we really perceive these objects differently depending on the day's performance?  And, does our performance influence our perception or does our perception help our performance?

 

!http://bp3.blogger.com/_3b3RMRFwqU0/SHPWUztPsBI/AAAAAAAAAXE/RdKYh_ozFHQ/s200-R/witt-golfLO.jpg|style=border: 0pt none ;|src=http://bp3.blogger.com/_3b3RMRFwqU0/SHPWUztPsBI/AAAAAAAAAXE/RdKYh_ozFHQ/s200-R/witt-golfLO.jpg!Jessica Witt, an assistant professor of psychological science at the University of Virginia has made two attempts at the answer.  First, in a 2005 study, "See the Ball, Hit the Ball", her team studied softball players by designing an experiment that tried to correlate perceived softball size to performance.  She interviewed players immediately after a game and asked them to estimate the size of the softball by picking a circle off of a board that contained several different sizes.  She then found out how that player had done at the plate that day.  As expected, the players that were hitting well chose the larger sized circles to represent the ball size, while the underperforming hitters chose the smaller circles.  The team was not able to answer the question of causality, so they expanded the research to other sports.

 

Fast forward to July, 2008 and Witt and her team have just released a very similar study focused on golf, "[Putting to a bigger hole: Golf performance relates to perceived size | http://www.ingentaconnect.com/content/psocpubs/pbr/2008/00000015/00000003/art00013]".  Using the same experiment format, players who had just finished a round of golf were asked to pick out the perceived size of the hole from a collection of holes that varied in diameter by a few centimeters.  Once again, the players who had scored well that day picked the larger holes and vice versa for that day's hackers.  So, the team came to the same conclusion that there is some relationship between perception and performance, but could not figure out the direction of the effect.  Ideally, a player could "imagine" a larger hole and then play better because of that visual cue. 

 

Researchers at Vanderbilt University may have the answer.  In a study, "[The Functional Impact of Mental Imagery on Conscious Perception | http://dx.doi.org/10.1016/j.cub.2008.05.048]", the team led by Joel Pearson, wanted to see what influence our "Mind's Eye" has on our actual perception.  In their experiment, they asked volunteers to imagine simple patterns of vertical or horizontal stripes.  Then, they showed each person a pattern of green horizontal stripes in one eye and red vertical stripes in the other eye.  This would induce what is known as the "binocular rivalry" condition where each image would fight for control of perception and would appear to alternate from one to the other.  In this experiment, however, the subjects reported seeing the image they had first imagined more often.  So, if they had imagined vertical stripes originally, they would report seeing the red vertical stripes predominantly.

 

The team concluded that mental imagery does have an influence over what is later seen.  They also believe that the brain actually processes imagined mental images the same way it handles actual scenes.  "More recently, with advances in human brain imaging, we now know that when you imagine something parts of the visual brain do light up and you see activity there," Pearson says. "So there's more and more evidence suggesting that there is a huge overlap between mental imagery and seeing the same thing. Our work shows that not only are imagery and vision related, but imagery directly influences what we see."

 

So, back to our sports example, if we were able to imagine a large golf hole or a huge baseball, this might affect our actual perception of the real thing and increase our performance.  This link has not been tested, but its a step in the right direction.  Another open question is the effect that our emotions and confidence have on our perceived task.  That hole may look like the Grand Canyon, but the sand trap might look like the Sahara Desert!

 

<span 5px;
\="" left;="" padding:="" style="">!http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png|height=50|alt=ResearchBlogging.org|width=80|src=http://www.researchblogging.org/images/rbicons/ResearchBlogging-Medium-White.png!</span>

 

<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.aulast=Witt&amp;rft.aufirst=J&amp;rft.aumiddle=K&amp;rft.au=J+ Witt&amp;rft.title=PsychonomicBulletin%26Review&amp;rft.atitle=Puttingtoabiggerhole%3Agolfperformancerelatestoperceived+size&amp;rft.date=2008&amp;rft.volume=15&amp;rft.issue=3&amp;rft.spage=581&amp;rft.epage=585&amp;rft.genre=article&amp;rft.id=http%3A%2F%2Fwww.ingentaconnect.com%2Fcontent%2Fpsocpubs%2Fpbr%2F2008%2F00000015%2F00000003%2Fart00013&amp;rft.id=info:PMID/18567258">Witt, J.K. (2008). Putting to a bigger hole: golf performance relates to perceived size. Psychonomic Bulletin & Review, 15(3), 581-585.

480 Views 0 Comments Permalink Tags: coaching, golf, baseball, sport_science, evidence_based_coaching, vision_and_perception, sport_skills, sport_psychology

 

From:  Sports Are 80 Percent Mental - Getting Sport Science Out Of The Lab And Onto The Field

You are a coach, trying to juggle practice

plans, meetings, game prep and player issues while trying to stay

focused on the season's goals.  At the end of another long day, you see

this in your inbox:

 

MEMO

To:          All Head Coaches

From:      Athletic Director

Subject:  Monthly Reading List to Keep Up with Current Sport Science Research

  • Neuromuscular Activation of Triceps Surae Using Muscle Functional MRI and EMG

  • Positive effects of intermittent hypoxia (live high:train low) on

exercise performance are not mediated primarily by augmented red cell

volume

  • Physiologic Left Ventricular Cavity Dilatation in Elite Athletes

  • The Relationships of Perceived Motivational Climate to Cohesion and Collective Efficacy in Elite Female Teams

 

Just some light reading before bedtime...  This is an obvious

exaggeration (and weak attempt at humor) of the gap between sport

science researchers and practitioners.  While those are actual research

paper titles from the last few years under the heading of "sport

science", the intended audience was most likely not coaches or

athletes, but rather fellow academic peers.  The real question is

whether the important conclusions and knowledge captured in all of this

research is ever actually used to improve athletic performance?  How

can a coach or athlete understand, combine and transfer this

information into their game?

 

David Bishop of the Faculty of Exercise and Sport Science at the University of Verona

has been looking at this issue for several years.  It started with a

roundtable discussion he had at the 2006 Congress of the Australian

Association for Exercise and Sports Science with several academic sport

scientists (see: Sports-Science Roundtable: Does Sports-Science Research Influence Practice?

)  He asked very direct questions regarding the definition of sport

science and whether the research always needs to be "applied" versus

establishing a "basic" foundation.  The most intriguing question was

whether there already is ample research that could applied, but it

suffered from the lack of a good translator to interpret and

communicate to the potential users - coaches and athletes.  The panel

agreed that was the missing piece, as most academic researchers just

don't have the time to deliver all of their findings directly to the

field.

 

In a follow-up to this discussion, Bishop recently published his proposed solution titled,  in Sports Medicine

(see citation below).  In it, he calls for a new framework for

researchers to follow when designing their studies so that there is

always a focus on how the results will directly improve athletic

performance.  He calls for a greater partnership role between

researchers and coaches to map out a useful agenda of real world

problems to examine.  He admits that this model, if implemented, will

only help increase the potential for applied sport science.  The

"middleman" role is still needed to bring this information to the front

lines of sports.

 

The solution for this "gathering place" community seems perfect for Web 2.0 technology.  One

specific example is an online community called iStadia.com.

Keith Irving and Rob Robson, two practicing sport science consultants,

created the site two years ago to fill this gap.  Today, with over 600

members, iStadia is approaching the type of critical mass that will be

necessary to bring all of the stakeholders together.  Of course, as

with any online community, the conversations there are only as good as

the participants want to make it.  But, with the pressure on coaches to

improve and the desire of sport scientists to produce relevant

knowledge, there is motivation to make the connection.

 

Another trend favoring more public awareness of sport science is the

additional, recent media attention, especially related to the upcoming

Beijing Olympics.  In an earlier post, Winning Olympic Gold With Sport Science, I highlighted a feature article from USA Today.  This month's Fast Company also picks up on this theme with their cover article, Innovation of Olympic Proportions,

describing several high-tech equipment innovations that will be used at

the Games.  Each article mentions the evolving trust and acceptance of

sport science research by coaches and athletes.  When they see actual

products, techniques and, most importantly, results come from the

research, they cannot deny its value.         

 

Source:

Bishop, D. (2008). An Applied Research Model for the Sport Sciences. Sports Medicine, 38(3), 253-263.

557 Views 0 Comments Permalink Tags: olympics, sport_science, evidence_based_coaching, relevant_research, sports_cognition, sports_science

From:  Sports Are 80 Percent Mental - Teaching Tactics and Techniques In Sports

You have probably seen both types of teams. Team A: players who are

evenly spaced, calling out plays, staying in their positions only to

watch them dribble the ball out of bounds, lose the pass, or shoot

wildly at the goal. Team B: amazing ball control, skillful shooting and

superior quickness, speed and agility but each player is a

"do-it-yourselfer" since no one can remember a formation, strategy or

position responsibility. Team A knows WHAT to do, but can't execute.

Team B knows HOW to do it, but struggles with making good team play

decisions. This is part of the ongoing balancing act of a coach. At the

youth level, teaching technique first has been the tradition, followed

by tactical training later and separately. More recently, there has

been research on the efficiency of learning in sports and whether there

is a third "mixed" option that yields better performance.

 

Earlier, we took an initial look at  as an introduction to this discussion.

In addition, Dr. Markus Raab of  the Institute for Movement Sciences and Sport, University of Flensburg, Germany,

(now of the Institute of Psychology, German Sport University in

Cologne), took a look at four major models of teaching sports skills

that agree that technical and tactical skills need to be combined for

more effective long-term learning.Each of the four models vary in their

treatment of learning along two different dimensions; implicit vs.

explicit learning and domain-specific vs. domain-general environments.

 

Types of Learning

 

Imagine two groups of boys playing baseball. The first group has gathered at

the local ball diamond at the park with their bats, balls and gloves.

No coaches, no parents, no umpires; just a group of friends playing an

informal "pick-up" game of baseball. They may play by strict baseball

rules, or they may improvise and make their own "home" rules, (no

called strikes, no stealing, etc.). In the past, they may have had more

formal coaching, but today is unstructured.

 

The second group is what we see much more often today. A team of players, wearing

their practice uniforms are driven by their parents to team practice at

a specific location and time to be handed off to the team coaches. The

coaches have planned a 90 minute session that includes structured

infield practice, then fly ball practice, then batting practice and

finally some situational scrimmages. Rules are followed and coaching

feedback is high. Both groups learn technical and tactical skills

during their afternoon of baseball. They differ in the type of learning

they experience. The first group uses "implicit" learning while the

second group uses "explicit" learning. Implicit learning is simply the

lack of explicit teaching. It is "accidental" or "incidental" learning

that soaks in during the course of our play. There is no coach teaching

the first group, but they learn by their own trial and error and

internalize the many if-then rules of technical and tactical skills.

Explicit learning, on the other hand, is directed instruction from an

expert who demonstrates proper technique or explains the tactic and the

logic behind it.

 

An interesting test of whether a specific skill or piece of knowledge has been

learned with implicit or explicit methods is to ask the athlete to describe or verbalize the

details of the skill or sub-skill. If they cannot verbalize how they

know what they know, it was most likely learned through implicit

learning. However, if they can explain the team's attacking strategy

for this game, for example, that most likely came from an explicit

learning session with their coach.

 

Types of Domains

 

The other dimension that coaches could use in choosing the best teaching

method is along the domain continuum. Some teaching methods work best

to teach a skill that is specific to that sport's domain and the level

of transferability to another sport is low. These methods are known as

domain-specific. For more general skills that can be useful in several

related sports, a method can be used known as domain-general. Why would

any coach choose a method that is not specific to their sport? There

has been evidence that teaching at a more abstract level, using both

implicit and explicit "play" can enhance future, more specific

coaching. Also, remember our discussion about kids playing multiple sports.

Based on these two dimensions, Dr. Raab looked at and summarized these four teaching models:

 

  • Teaching Games for Understanding (TGFU)

  • Decision Training (DT)

  • Ball School (Ball)

  • Situation Model of Anticipated Response consequences of Tactical training (SMART)

 

TGFU

 

The TGFU approach, (best described by Bunker, D.; Thorpe, R. (1982) A model for the

teaching of games in the secondary school, Bulletin of Physical Education, 10, 9–16), is known

for involving the athlete early in the "cognition" part of the game and

combining it with the technical aspect of the game. Rather than learn

"how-to" skills in a vacuum, TGFU argues that an athlete can tie the

technical skill with the appropriate time and place to use it and in

the context of a real game or a portion of the game. This method falls

into the explicit category of learning, as the purpose of the exercise

is explained. However, the exercises themselves stress a more

domain-general approach of more generic skills that can be transferred

between related sports such as "invasion games" (soccer, football,

rugby), "net games" (tennis, volleyball), "striking/fielding games"

(baseball, cricket) and "target games" (golf, target shooting).

 

Decision Training

 

The DT method, (best described by Vickers, J. N., Livingston, L. F.,

Umeris-Bohnert, S. & Holden, D. (1999) Decision training: the

effects of complex instruction, variable practice and reduced delayed

feedback on the acquisition and transfer of a motor skill, Journal of

Sports Sciences, 17, 357–367), uses an explicit learning style but with

a domain-specific approach. Please see my earlier post on Decision Training for

details of the approach.

 

Ball School

 

The Ball School approach, (best described by Kroger, C. & Roth, K.

(1999) Ballschule: ein ABC fur Spielanfanger [Ball school: an ABC for

game beginners] (Schorndorf, Hofmann), starts on the other end of both

spectrums, in that it teaches generic domain-general skills using

implicit learning. It emphasizes that training must be based on

ability, playfullness, and skill-based. Matching the games to the

group's abilities, while maintaining an unstructured "play" atmosphere

will help teach generic skills like "hitting a target" or "avoiding

defenders".

 

SMART

 

Dr. Raab's own SMART model, (best described in Raab, M. (2003) Decision making in

sports: implicit and explicit learning is affected by complexity of

situation, International Journal of Sport and Exercise Psychology, 1,

406–433), blends implicit and explicit learning within a

domain-specific environment. The idea is that different sports'

environmental complexity may demand either an implicit or explicit

learning method. Raab had previously shown that skills learned

implicitly work best in sport enviroments with low complexity. Skills

learned explicitly will work best in highly complex environments.

Complexity is measured by the number of variables in the sport. So, a

soccer field has many moving parts, each with its own variables. So,

the bottom line is to use the learning strategy that fits the sport's

inherent difficulty. So, learning how to choose from many different

skill and tactical options would work best if matched with the right

domain-specific environment.

 

Bottom-Line for Coaches

 

What does all of this mean for the coach? That there are several different

models of instruction and that one size does not fit all situations.

Coaches need an arsenal of tools to use based on the specific goals of

the training session. In reality, most sports demand both implicit and

explicit learning, as well as skills that are specific to one domain,

and some that can transfer across several sport domains. Flexibility in

the approach taken goes back to the evidence based coaching example we gave last time.

Keeping an open mind about coaching methods and options will produce better prepared athletes.

 

(2007). Discussion. Physical Education & Sport Pedagogy, 12(1), 1-22. DOI: 10.1080/17408980601060184

850 Views 0 Comments Permalink Tags: coaching, sport_science, evidence_based_coaching, sports_cognition, vision_and_perception, decision_theory_in_sports, youth_sports

 

From:  Sports Are 80 Percent Mental - Winning Gold With Sport Science

Its something that every coach and every athlete of every sport is

searching for... the EDGE. That one training tip, equipment

improvement, mental preparation or tactical insight that will tip the

game towards them. The body of knowledge that exists today in each

sport is assumed, with each competitor expected to at least be aware of

the history, beliefs and traditions of their individual sport. But, if

each team is starting with the same set of information then the team

that takes the next step by applying new research and ideas will

capture the edge.

 

To me, that is what sport science is all about. The goal is to improve sports

performance by imagining, analyzing, experimenting, testing, documenting and

training new methods to coaches and athletes.

 

You might have seen a great article in the 6/23 edition of USA Today.

We meet Peter Vint, a "sport technologist" in the Performance Technology Division

of the US Olympic Training Center in Colorado Springs, CO, whose job it is to find ways

to win more gold medals. From the article; "The next revolution, Vint says, is breaking

down the last secrets of elite athletes: response time, how they read

the field and other players — everything that goes into the vision,

perception and split-second decision-making of an athlete. 'We've

always looked at that as mysterious, something that's unmeasurable and

innate,' Vint says. 'But we think it can be taught.'"

 

Interestingly, Vint cites another pioneer in evidence-based sports coaching, Oakland

A's general manager, Billy Beane. "We're becoming progressively more

data-driven," Vint says of the center's training efforts. "We are

trying to pursue what Sabermetrics and Billy Beane did for baseball,

identifying factors that can truly influence performance." The radical

concept that Beane created, as documented in the bestseller, ,

is to stop searching for "the edge" in all the same places that

everyone else is looking. Instead, he started from scratch with new

logic about the objectives of the game of baseball itself and built

metrics that gave new insight into the types of players and skill sets

that he should acquire for his team.

 

If sport science is going to thrive and be accepted, it faces the challenge of inertia.

The ideas and techniques that are the product of sport science can also

be captured in the phrase, "evidence based coaching". Just as evidence

based medicine has slowly found its place in the physician's exam room,

the coaching profession is just beginning to trust the research.

Traditionally, "belief based coaching" has been the philosophy favored

in the clubhouse. Training drills, tactical plans, player selection and

player development has been guided by ideas and concepts that have been

handed down from one generation of coaches to the next. Most of these

beliefs are valid and have been proven on the field through many years

of trial and error. Subjecting these beliefs to scientific research may

not produce conclusions any different than what coaching lore tells us.

But, today's coaches and athletes see the competition creeping closer

to them in all aspects, so they are now willing to at least listen to

the scientists. Beane likens it to financial analysis and the stock

market. The assumption is that all information is known by all. But, if

someone can find a ratio or a statistic or make an industry insight

that no one has considered, then they own the competitive advantage; at

least until this new information is made public.

 

It takes time, though, to amass enough data to convince a head coach to

change years of habits for the unknown. Reputations and championships

are on the line, so the changes sometimes need to be implemented

slowly. Vint describes the gradual process of converting U.S. hurdler

Terrence Trammell and his coach to some of his ideas. "The relationship

between the athletes and sports scientist is critical," Vint says. "But

(for some), biomechanics has not yet provided useful enough

suggestions."

 

There still is debate on evidence based coaching vs. belief based coaching.

Robert Robson, sport psychologist and management consultant, stated,

"Sports coaching should absolutely be evidence-based, but any argument that places the

sole source of evidence in the realm of the scientific method is, I

would argue, naive and lacking in an understanding of the philosophical

underpinnings of science."  Looking forward, I will dig a little deeper into this topic in the next week, so

please check back or subscribe to Sports Are 80 Percent Mental.

482 Views 0 Comments Permalink Tags: olympics, coaching, coaching, moneyball, sport_science, evidence_based_coaching, sports_cognition, sport_psychology, youth_sports, billy_beane, rob_robson

 

From: Sports Are 80 Percent Mental - Single Sport Kids - When To Specialize

So, your grade school son or daughter is a good athlete, playing

multiple sports and having fun at all of them. Then, you hear the usual

warning, either from coaches or other parents; "If you want your

daughter to go anywhere in this sport, then its time to let the other

sports go and commit her full-time to this one." The logic sounds

reasonable. The more time spent on one sport, the better she will be at

that sport, right? Well, when we look at the three pillars of our

Sports Cognition Framework, motor skill competence, decision making ability,

and positive mental state, the question becomes whether any of these would benefit from

playing multiple sports, at least in the early years of an athlete

(ages 3-12)? It seems obvious that specific technical motor skills,

(i.e. soccer free kicks, baseball bunting, basketball free throws) need

plenty of practice and that learning the skill of shooting free throws

will not directly make you a better bunter. On the other end, learning

how to maintain confidence, increase your focus, and manage your

emotions are skills that should easily transfer from one sport to

another. That leaves the development of tactical decision making

ability as the unknown variable. Will a young athlete learn more about

field tactics, positional play and pattern recognition from playing

only their chosen sport or from playing multiple related sports?

 

 

 

 

Researchers at the University of Queensland, Australia

learned from previous studies that for national team caliber players

there is a correlation between the breadth of sport experiences they

had as a child and the level of expertise they now have in a single

sport. In fact, these studies show that there is an inverse relation

between the amount of multi-sport exposure time and the additional

sport-specific training to reach expert status. In plain English, the

athletes that played several different (but related) sports as a child,

were able to reach national "expert" level status faster than those

that focused only one sport in grade school . Bruce Abernethy,

Joseph Baker and Jean Cote designed an experiment to observe and

measure if there was indeed a transfer of pattern recognition ability

between related sports (i.e. team sports based on putting an object in

a goal; hockey, soccer, basketball, etc.)

 

 

 

 

 

 

They recruited two group of athletes; nationally recognized experts in each

of three sports (netball, basketball and field hockey) who had broad

sports experiences as children and experienced but not expert level

players in the same sports whose grade school sports exposure was much

more limited (single sport athletes). (For those unfamiliar with

netball, it is basically basketball with no backboards and few

different rules.) The experiment showed each group a video segment of

an actual game in each of the sports. When the segment ended the groups

were asked to map out the positions and directions of each of the

players on the field, first offense and then defense, as best they

could remember from the video clip. The non-expert players were the

control group, while the expert players were the experimental groups.

First, all players were shown a netball clip and asked to respond.

Second, all were shown a basketball clip and finally the hockey clip.

The expectation of the researchers was that the netball players would

score the highest after watching the netball clip (no surprise there),

but also that the expert players of the other two sports would score

higher than the non-expert players. The reasoning behind their theory

was that since the expert players were exposed to many different sports

as a child, there might be a significant transfer effect between sports

in pattern recognition, and that this extra ability would serve them

well in their chosen sport.

 

 

 

 

 

 

The results were as predicted. For each sport's test, the experts in that sport scored the

highest, followed by the experts in the other sports, with the

non-experts scoring the poorest in each sport. Their conclusion was

that there was some generic learning of pattern recognition in team

sports that was transferable. The takeaway from this study is that

there is benefit to having kids play multiple sports and that this may

shorten the time and training needed to excel in a single sport in the

future.

 

 

 

 

 

 

So, go ahead and let your kids play as many

sports as they want. Resist the temptation to "overtrain" in one sport

too soon. Playing several sports certainly will not hurt their future

development and will most likely give them time to find their true

talents and their favorite sport.

 

 

 

 

 

 

Source:

 

 

 

 

 

 

Abernethy, B., Baker, J., Côté, J. (2005). Transfer of pattern recall skills may

contribute to the development of sport expertise. Applied Cognitive Psychology, 19(6), 705-718. DOI: 10.1002/acp.1102 

 

 

654 Views 0 Comments Permalink Tags: coaching, sport_science, evidence_based_coaching, sports_cognition, vision_and_perception, sport_skills, sport_psychology, decision_theory_in_sports, youth_sports
1 2 Previous Next

Dan Peterson

Dan Peterson

Member since: Oct 1, 2007

A Look Inside the Mind of the Athlete - You can find a mix of sport science, cognitive science, coaching and performance stories here as I focus on the "thinking" side of sports. My "home" is at http://blog.80percentmental.com. Thanks for stopping by!

View Dan Peterson's profile

Recent Comments

No recent comments.